EAST has been equipped with two high power lower hybrid current drive (LHCD) systems with operating frequencies of 2.45 GHz and 4.6 GHz. Comparative LHCD experiments with the two different frequencies were performed in the same conditions of plasma for the first time. It was found that current drive (CD) efficiency and plasma heating effect are much better for 4.6 GHz LH waves than for the one with 2.45 GHz. High confinement mode (H-mode) discharges with 4.6 GHz LHCD as the sole auxiliary heating source have been obtained in EAST and the confinement is higher with respect to that produced previously by 2.45 GHz. A combination of ray-tracing and Fokker-Planck calculations by using the C3PO/LUKE codes was performed in order to explain the different experimental observations between the two waves. In addition, the frequency spectral broadening of the two LH wave operating frequencies was surveyed by using a radio frequency probe.
Couplings of lower hybrid wave (LHW) with different divertor configurations are studied in EAST. With an anti-clockwise toroidal magnetic field and similar plasma parameters, experimental results show that the best coupling occurs in the lower single null (LSN) configuration, whereas the worst occurs in the double-null plasma. Furthermore, for the case of clockwise toroidal magnetic field, the coupling of LHW becomes better in the upper single null configuration and worse in the LSN plasma. Such phenomena show that the LHW coupling with different divertor configurations is possibly related to the flux induced by E r × B t and edge recycling intensity represented by D a , where E r is the radial electric field in the scrape-off layer. In addition, various edge-localized modes (ELMs), including its intensity and frequency, have impacts on LHW coupling. With increasing ELM frequency in low edge recycling, the intensity of D a would decrease and the associated coupling of LHW should deteriorate. For the case of comparable edge density, the coupling of LHW is almost not influenced by the ELM crash. Results indicate that the changes among D a intensity, ELM frequency and the reflection coefficients of LHW power are self-consistent. Studies show that by gas puffing the nearby LH grill can improve the coupling of LHW during H-mode in EAST. Meanwhile, it is observed that the frequency of ELM should decrease and the plasma confinement should be improved with proper gas puffing, whereas excessive gas puffing should increase the frequency of ELM during H-mode in the case of good LHW coupling. Results also indicate a degradation in confinement performance at increasing puffing rate.
Significant progress on both L- and H-mode long-pulse discharges has been made recently in Experimental Advanced Superconducting Tokamak (EAST) with lower hybrid current drive (LHCD) [J. Li et al., Nature Phys. 9, 817 (2013) And B. N. Wan et al., Nucl. Fusion 53, 104006 (2013).]. In this paper, LHCD experiments at high density in L-mode plasmas have been investigated in order to explore possible methods of improving current drive (CD) efficiency, thus to extend the operational space in long-pulse and high performance plasma regime. It is observed that the normalized bremsstrahlung emission falls much more steeply than 1/ne_av (line-averaged density) above ne_av = 2.2 × 1019 m−3 indicating anomalous loss of CD efficiency. A large broadening of the operating line frequency (f = 2.45 GHz), measured by a radio frequency (RF) probe located outside the EAST vacuum vessel, is generally observed during high density cases, which is found to be one of the physical mechanisms resulting in the unfavorable CD efficiency. Collisional absorption of lower hybrid wave in the scrape off layer (SOL) may be another cause, but this assertion needs more experimental evidence and numerical analysis. It is found that plasmas with strong lithiation can improve CD efficiency largely, which should be benefited from the changes of edge parameters. In addition, several possible methods are proposed to recover good efficiency in future experiments for EAST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.