Sulfondiiminesthe double aza-analogues of sulfoneshold significant potential as leads in discovery chemistry, yet their application in this arena has been held back by the scarcity of appropriate synthetic routes. Existing methods employ sulfides as substrates, and rely on consecutive imination reactions using the hazardous reagent O-mesitylenesulfonyl hydroxylamine.Here we report a method for sulfondiimine synthesis that does not begin with a sulfide or a thiol, and instead employs two Grignard reagents and a bespoke sulfinylamine (RNSO) reagent as starting materials. Lewis acid-mediated assembly of these three components provides efficient access to a series of sulfilimine intermediates. A novel rhodium-catalyzed imination of these electron-rich sulfilimines then delivers a varied range of sulfondiimines featuring orthogonal N-functionalization. Conditions for the selective manipulation of both Natoms of the sulfondiimines are reported, allowing access to a broad range of mono-and difunctionalized products. The oxidation of the sulfilimine intermediates is also described, and provides a complementary route to sulfoximines.
A new method for one-step construction of the tetracyclic core structure of the indole alkaloid (+)-minfiensine was developed utilizing a palladium-catalyzed asymmetric indole dearomatization/iminium cyclization cascade. An efficient total synthesis of (+)-minfiensine was realized using this strategy. The present method enables access to the common core structure of a series of monoterpene indole alkaloids, such as vincorine, echitamine, and aspidosphylline A.
A new
N
-silyl sulfinylamine
reagent allows the
rapid preparation of a broad range of (hetero)aryl, alkenyl, and alkyl
primary sulfinamides, using Grignard, organolithium, or organozinc
reagents to introduce the carbon fragment. Treatment of these primary
sulfinamides with an amine in the presence of a hypervalent iodine
reagent leads directly to NH-sulfonimidamides. This two-step sequence
is straightforward to perform and provides a modular approach to sulfonimidamides,
allowing ready variation of both reaction components, including primary
and secondary amines.
Sulfur functional
groups are common motifs in bioactive molecules.
Sulfonamides are most prevalent but related aza-derivatives, in which
oxygen atoms are replaced by imidic nitrogens, such as sulfoximines
and sulfonimidamides, are gaining attraction. Despite this activity,
the double aza-variants of sulfonamides, termed sulfondiimidamides,
are almost completely absent from the literature. The reason for this
is poor synthetic accessibility. Although a recent synthesis has established
sulfondiimidamides as viable motifs, the length of the route and the
capricious nature of the key sulfondiimidoyl fluoride intermediates
mean that direct application to discovery chemistry is challenging.
Herein, we describe a two-step synthesis of sulfondiimidamides, exploiting
a hypervalent iodine-mediated amination as the key step. The starting
materials are organometallic reagents, an unsymmetrical sulfurdiimide,
and amines. The method allowed >40 examples to be prepared, including
derivatives of three sulfonamide-based drugs. The operational simplicity,
broad scope, and concise nature make this route attractive for discovery
chemistry applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.