Objective This study is aimed at constructing and verifying nomograms that forecast overall survival (OS) and cancer-specific survival (CSS) of children with Wilms' tumor (WT). Patients and methods Clinical information of 1613 WT patients who were under 18 years old between 1988 and 2010 was collected from the Surveillance, Epidemiology, and End Results (SEER) database. Using these data, we performed univariate as well as multivariate Cox's regression analyses to determine independent prognostic factors for WT. Then, nomograms to predict 3- and 5-year OS and CSS rates were constructed based on the identified prognostic factors. The nomograms were validated externally and internally. The nomograms' reliability was evaluated utilizing receiver operating characteristic (ROC) curves and concordance indices (C-indices). Results 1613 WT patients under 18 were involved in the study and randomly divided into the training (n = 1210) and validation (n = 403) cohorts. Age at diagnosis, tumor laterality, tumor size, tumor stage, and use of surgery were determined as independent prognostic factors for OS and CSS in WT and were further applied to construct prognostic nomograms. The C-index and area under the receiver operating characteristic curve (AUC) revealed the great performance of our nomograms. Internal and external calibration plots also showed excellent agreement between actual survival and nomogram prediction. Conclusion Precise and convenient nomograms were developed for forecasting OS and CSS of children with WT. These nomograms were able to offer accurate and individualized prognosis and assisted clinicians in performing suitable therapy.
Background: Competitive endogenous RNAs (ceRNAs) have revealed a new mechanism of interaction between RNAs. However, an understanding of the ceRNA regulatory network in Wilms tumour (WT) remains limited. Methods: The expression profiles of mRNAs, miRNAs and lncRNAs in Wilms tumour samples and normal samples were obtained from the Therapeutically Applicable Research to Generate Effective Treatment (TARGET) database. The EdgeR package was employed to identify differentially expressed lncRNAs, miRNAs and mRNAs. Functional enrichment analyses via the ClusterProfile R package were performed, and the lncRNA-miRNA-mRNA interaction ceRNA network was established in Cytoscape. Subsequently, the correlation between the ceRNA network and overall survival was analysed.Results: A total of 2037 lncRNAs, 154 miRNAs and 3609 mRNAs were identified as differentially expressed RNAs in Wilms tumour. Of those, 205 lncRNAs, 26 miRNAs and 143 mRNAs were included in the ceRNA regulatory network. The results of Gene Ontology (GO) analysis revealed that the differentially expressed genes (DEGs) were mainly enriched in terms related to response to mechanical stimuli, transcription factor complexes, and transcription factor activity (related to RNA polymerase II proximal promoter sequence-specific DNA binding). The results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the DEGs were mainly enriched in pathways related to the cell cycle. The survival analysis results showed that 16 out of the 205 lncRNAs, 1 out of 26 miRNAs and 5 out of 143 mRNAs were associated with overall survival in Wilms tumour patients (P < 0.05). Conclusions:CeRNA networks play an important role in Wilms tumour. This finding might provide effective, novel insights for further understanding the mechanisms underlying Wilms tumour.
Objective. Bladder cancer (BC) is the most common malignancy in the urinary system and is prone to recurrence and metastasis. Pyroptosis is a kind of cell necrosis that is triggered by the gasdermin protein family. lncRNAs are noncoding RNAs that are more than 200 nucleotides long. Both pyroptosis and lncRNAs are associated with tumor development and progression. This study is aimed at exploring and establishing a prognostic signature of BC based on pyroptosis-related lncRNAs. Methods. In this study, The Cancer Genome Atlas (TCGA) database provided us with the RNA sequencing transcriptome data of bladder cancer patients, and we identified differentially expressed pyroptosis-related lncRNAs in bladder cancer. Then, the prognostic significance of these lncRNAs was assessed using univariate Cox regression analysis and LASSO regression analysis. Subsequently, 4 pyroptosis-related lncRNAs, namely, AL121652.1, AL161729.4, AC007128.1, and AC124312.3, were identified by multivariate Cox regression analysis, thus constructing the prognostic risk model. Then, we compared the levels of immune infiltration, differences in cell function, immune checkpoints, and m6A-related gene expression levels between the high- and low-risk groups. Result. Patients were divided into low-risk or high-risk groups based on the median risk score. Kaplan–Meier survival analysis indicated that the overall survival of bladder cancer patients in the low-risk group was substantially superior to that in the high-risk group ( p < 0.001 ). The receiver operating characteristic (ROC) curve further confirmed the credibility of our model. Moreover, gene set enrichment analysis (GSEA) indicated that these were different signal pathways significantly enriched between the two groups. Immune infiltration, immune checkpoint, and N6-methyladenosine-related gene analysis also reflected that there were notable differences between the two groups. Conclusion. Therefore, this prognostic risk model is based on the level of pyroptotic lncRNAs, which is conducive to individualized assessment of the risk of patients and provides a reference for clinical treatment. This will also help provide insights into the prognosis and treatment of bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.