In this paper, we create a matrix representation for spiking neural P systems with structural plasticity (SNPSP, for short), taking inspiration from existing algorithms and representations for related variants. Using our matrix representation, we provide a simulation algorithm for SNPSP systems. We prove that the algorithm correctly simulates an SNPSP system: our representation and algorithm are able to capture the syntax and semantics of SNPSP systems, e.g. plasticity rules, dynamism in the synapse set. Analyses of the time and space complexity of our algorithm show that its implementation can benefit using parallel computers. Our representation and simulation algorithm can be useful when implementing SNPSP systems and related variants with a dynamic topology, in software or hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.