Single-walled carbon nanotubes (SWCNTs) were dispersed in water with the help of a combination of surfactants to achieve a high concentration SWCNT ink. Transparent conducting films (TCFs) were fabricated through a rod-coating method using the SWCNT ink. The addition of binders (polyacrylic acid or carboxymethyl cellulose) greatly enhanced the adhesion of SWCNT films to substrates and the cohesion between CNTs, which produced a uniform film of SWCNTs by preventing damage during the post-treatment process. The thickness of SWCNT films is controlled by the amount of SWCNTs in the solution and the diameter of the wire used. To test the film adhesion, Scotcht tape was used to detach some loosely bound SWCNTs. Then the SWCNT films were further post-treated with nitric acid to improve the conductivity. The addition of polyacrylic acid to the SWCNT dispersion improved the film adhesion obviously without decreasing its electrical conductivity. This rod-coating method demonstrates great potential for the scalable fabrication of flexible SWCNT-TCFs.
Background
Studies have shown that a direct association exists between the diet and blood uric acid concentrations. However, works on the association of dietary patterns with blood uric acid concentrations and hyperuricemia remain limited.
Objective
This study aims to evaluate the association of dietary patterns with blood uric acid concentrations and hyperuricemia.
Methods
The relationship between dietary patterns and hyperuricemia was explored through a nutritional epidemiological survey in China (n = 4855). Three statistical methods, including principal component analysis, reduced rank regression (RRR), and partial least squares regression, were used to extract dietary patterns. General linear regression and logistic regression analyses were utilized to explore the relationship of dietary patterns with blood uric acid concentrations and hyperuricemia.
Results
After adjusting for potential confounding factors, the score for the plant-based dietary pattern was found to be negatively correlated with blood uric acid levels (β = − 3.225) and that for the animal dietary pattern was discovered to be directly correlated with blood uric acid levels (β = 3.645). The participants in the highest quartile of plant-based dietary pattern scores were at a low risk of hyperuricemia (OR = 0.699; 95% CI: 0.561–0.870, P < 0.05), whereas those in the highest quartile of animal dietary pattern scores were at a high risk of hyperuricemia (OR = 1.401; 95% CI: 1.129–1.739, P < 0.05). The participants in the third quartile of scores for the RRR dietary pattern, which was characterized by the relatively high intake of poultry, sugary beverages, and animal organs and the low intake of desserts and snacks, had a significantly higher risk of hyperuricemia than those in the first quartile of scores for the RRR dietary pattern (OR = 1.421; 95% CI: 1.146–1.763, P < 0.05).
Conclusions
Our research indicated that plant-based dietary pattern analyzed by PCA was negatively associated with blood uric acid concentrations, while animal-based dietary pattern was directly associated with blood uric acid concentrations. The RRR dietary pattern may have the potential to induce elevations in blood uric acid concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.