Taking into account energy management and fire safety, electric bicycles are one of the most significant household loads that require real-time sensing for nonintrusive load monitoring. V–I trajectories, power quantities, and harmonic characteristics are the basic selection in feature space for appliance identification. Based on the study of the charging mode of electric bicycles, this study expands the V–I trajectory into V-△I trajectory for gaining the load signature with multi appliances working simultaneously. We perform linear interpolation and pixelation to obtain a bitmap of the V-△I trajectory. Meanwhile, active and harmonic features are encoded and combined to form a hybrid feature bitmap, which is unique to compensate for the high harmonic feature loss caused by the pixelation of the V-△I trajectory. Furthermore, we trained the DeiT model on the self-built dataset and UK-DALE dataset and performed two experiments under single and superposition working conditions for electric bicycles. Our case results indicate that the DeiT model using hybrid feature bitmap offers better overall precision in the prediction of electric bicycles, against other deep convolutional neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.