Rough- and intermediate-rolled composite billets and finished clad rebars were cut using flying shears. The law of metal rheology and the mechanism of composite interface generation during clad rebar formation were then investigated using metallographic microscopy, electron backscatter diffraction, and scanning electron microscopy. The radial deformation trend of the clad rebars was greater than that of HRB400 rebars and “ears” were more likely to appear during the rolling process. The widths of the decarburization and composite zones and diffusion distances of each element decreased as the cumulative reduction rate increased. Furthermore, as deformation increased, the number of oxides on the composite interface significantly decreased, the proportion of recrystallized grains increased, and the grains became more refined. These changes led to increases in the bond and tensile strengths of the composite interface. According to the research above, the pass filling degree should be within 0.85–0.9 and the cumulative reduction rate should be over 80% when rolling clad rebars.
Clad rebars of four different base materials (20MnSiV, 35# steel, 45# steel, and 55# steel) were successfully produced by a vacuum hot rolling process. A metallographic optical microscope (OM), electron backscatter diffractometer (EBSD), electron probe micro-analyzer (EPMA), and salt spray corrosion chamber were used to investigate the clad contour, properties, and composite interface microstructure of all four rebars. The results demonstrated that the thickness of the clad layer in the 20MnSiV/316L rebar had a more uniform distribution than those in the 35#/316L rebar, 45#/316L rebar, and 55#/316L rebar because 20MnSiV was more similar to 316L stainless steel in terms of deformation tendency. As the carbon content in the base layer increased, the amount of chromium-rich carbides increased noticeably. These large amounts led to a deficiency of chromium in the rebar composite interface and reduced corrosion resistance. Furthermore, bonding performance tests revealed that the bonding strength of the rebar composite interface not only depended on the amount of chromium-rich carbides, but also on the grain size of the composite interface. The larger the grain size of the composite interface, the lower the bonding strength was.
The existing process for the preparation of cladded rebars is too complicated for large-scale industrial production. Therefore, this paper proposes a 55#/316L rebar preparation method based on vacuum hot rolling. The microstructure and mechanical properties of the composite interface of the rebar, along with the connecting technique, were studied using transmission electron microscopy, X-ray diffraction, and Vickers hardness testing. The obtained results showed that the minimum thickness of the 55#/316L rebar cladding was 0.25 mm, which was twice that of the M 329M/M 329-11 design standard used in the United States of America. Due to the diffusion of carbon, large numbers of second-phase particles were precipitated on the stainless-steel side, which resulted in intergranular chromium depletion. After multi-pass hot rolling, the minimum bonding strength of the composite interface reached 316.58 MPa, which was considerably higher than the specified value of 210 MPa. In addition, we designed three different types of rebar connection joints: sleeve, groove-welded, and bar-welded. According to the tensile test, the bar-welded joint had higher yield strength (385 MPa) and tensile strength (665 MPa) than the base rebar (376.6 MPa and 655 MPa), as well as a very high corrosion resistance.
Clad rebar is one of the key structures of marine and construction services. Therefore, it is of great importance to acknowledge the mechanical property parameters of the composite region in the structural integrity evaluation of clad rebar. The different base materials of clad rebar (20MnSiV/316L steel, 35#/316L steel, 45#/316L steel, and 55#/316L steel) are researched in this study. The composite area is further refined, and simultaneously, a refinement model of the composite region of clad rebar is established. In view of the fact that a surface hardness experiment is quite easy to conduct, a proposed method consists of obtaining the mechanical property parameters of materials using the surface hardness test. The mechanical property parameters are acquired; moreover, the relationship between yield stress and surface hardness of the stainless steel clad rebar is set up. We used this method to acquire the mechanical parameters of a composite surface uneven area of clad rebar, and we established a mechanical parameters mathematics model of clad rebar, it is a significant basis for a structural integrity evaluation of cladding materials.
The formation, propagation, and detection of fatigue cracks are the key issues for the life extension of pressure pipelines and metal welded joints. Especially in the high-temperature and high-pressure water environment of nuclear power. Since the interference of measuring instruments and noise would affect the monitoring of potential signals that characterize crack growth. Combined with the relevant information and various methods of fatigue crack growth detection were analyzed, it can be seen that the Direct Current Potential Drop (DCPD) method has significant advantages in many crack detection methods. Firstly, the development history and current situation of fatigue crack research were analyzed. Secondly, its basic principles and key problems were summarized. Based on the existing crack detection methods, the real-time monitoring system was introduced, and the overall research status was evaluated and analyzed, which a reliable scientific basis for the numerical analysis of fatigue life and a reference were provided for the research on this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.