Chinese medicine (CM) was extensively used to treat COVID-19 in China. We aimed to evaluate the real-world effectiveness of add-on semi-individualized CM during the outbreak. A retrospective cohort of 1788 adult confirmed COVID-19 patients were recruited from 2235 consecutive linked records retrieved from five hospitals in Wuhan during 15 January to 13 March 2020. The mortality of add-on semi-individualized CM users and non-users was compared by inverse probability weighted hazard ratio (HR) and by propensity score matching. Change of biomarkers was compared between groups, and the frequency of CMs used was analyzed. Subgroup analysis was performed to stratify disease severity and dose of CM exposure. The crude mortality was 3.8% in the semi-individualized CM user group and 17.0% among the non-users. Add-on CM was associated with a mortality reduction of 58% (HR = 0.42, 95% CI: 0.23 to 0.77, [Formula: see text] = 0.005) among all COVID-19 cases and 66% (HR = 0.34, 95% CI: 0.15 to 0.76, [Formula: see text] = 0.009) among severe/critical COVID-19 cases demonstrating dose-dependent response, after inversely weighted with propensity score. The result was robust in various stratified, weighted, matched, adjusted and sensitivity analyses. Severe/critical patients that received add-on CM had a trend of stabilized D-dimer level after 3–7 days of admission when compared to baseline. Immunomodulating and anti-asthmatic CMs were most used. Add-on semi-individualized CM was associated with significantly reduced mortality, especially among severe/critical cases. Chinese medicine could be considered as an add-on regimen for trial use.
Clinical symptom‐based diagnosis and therapy play a crucial role in personalized medicine and drug discovery. The syndromes, distinctive groups of clinical symptoms summarized by traditional Chinese medicine (TCM) theories and clinical experiences, are used as the core diagnostic criteria and therapeutic guidance in TCM. However, there is still a lack of standardized data, information, and intrinsic molecular basis to help TCM syndromes better classify diseases and guide tailored medications. To address this problem, we built the first integrated web platform, SoFDA (http://www.tcmip.cn/Syndrome/front/), with a curated ontology of 319 TCM syndromes, 8045 diseases, and 1359 TCM herbal formulas and their relationships with genes, diseases, and formulas. This platform proposed an association measurement by calculating Jaccard/Cosine similarities between TCM syndromes and their related biomedical entities with case and control validations. On this basis, the SoFDA platform enables biomedical and pharmaceutical scientists to rank and filter the most promising associations for disease diagnosis and tailored interventions. Conversely, the targeted gene sets and symptom sets can also be associated with TCM syndromes, formulas, and diseases for function illustration. Notably, SoFDA explores the multi‐way associations among diseases, TCM syndromes, symptom genes, herbal formulas, drug targets, and pathways in heterogeneous biomedical networks with lots of customization. The protocol here implements all the analyses above using the SoFDA platform. Collectively, SoFDA may provide insights into the biological basis of disease‐specific TCM syndromes and the underlying molecular mechanisms, as well as a tailored treatment for single or multiple symptoms within a syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.