Superhydrophobic treatment of wood surfaces can effectively prevent the contact between the external moisture and wood, which improves the service life of the wood. In this study, different rough surfaces of wood were constructed, derived from the self-polymerization of dopamine (DA) in weak base solution to form a polydopamine (PDA) coating and the deprotonation of the PDA coating in a strong base solution. Furthermore, octadecyltrichlorosilane (OTS) was used as a low-surface-free-energy agent to modify rough surface in order to prepare superhydrophobic woods: Wood@PDA–NaOH–OTS and the Wood@PDA–NaOH/SiO2–OTS. The contact angles (CAs) and sliding angles (SAs) of the resulting superhydrophobic woods were tested. The results showed that the CA and SA of the Wood@PDA–NaOH–OTS were 151° and 4.8°, respectively; the CA and SA of the Wood@PDA–NaOH/SiO2–OTS were 155.1° and 5.0°, respectively. Surface electron microscopy (SEM) images presented that NaOH successfully etched the PDA coating, and the roughness was further improved by adding nano-SiO2. Atomic force microscope images (AFM) revealed that the nano-SiO2 particles could effectively provide nanolevel roughness, which was beneficial to the wood’s superhydrophobic properties. In addition, the obtained superhydrophobic wood possessed strong surface stability and anti-loss property, as well as resistance to acid-base solution and organic solvent.
In this study, a superhydrophobic wood surface was prepared with amino-functionalized nano-silica (SiO2) particles, epoxy resin (EP) of different curing times, and octadecyltrichlorosilane (OTS). The micro-nano structures of the wood samples were represented by scanning electron microscopy (SEM), while the hydrophobicity and durability of the hydrophobic effect was shown by the contact angle (CA) tests. The results indicated that the optimal curing time of EP was 4 h, such that the wood surface exhibited promising superhydrophobicity with a static CA of 155.4° and a sliding angle (SA) of 3.9°. The different curing time of EP had a remarkable influence on the roughness and the pore structure type of superhydrophobic wood surface. In terms of the Cassie-Baxter theory, the increase of CA on the wood surface was ascribed to the presence of secondary air pores and rough structure in the solid-liquid interface. The obtained wood surface not only possessed excellent adhesion stability and anti-aging properties, but also a resistance to acidic solutions, organic solvents, and mechanical abrasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.