Specific and sensitive circulating tumor cells (CTCs) isolation is significant to apply CTCs in cancer diagnosis and monitoring. In this work, the dual aptamers modified poly (lactic-co-glycolic acid) (PLGA) nanofibers...
Circulating tumor cells (CTCs) are an important part of liquid biopsy as they represent a potentially rich source of information for cancer diagnosis, monitoring, prognosis, and treatment guidance. It has been proved that the nanotopography interaction between cells and the surface of CTC detection platforms can significantly improve the capture efficiency of CTCs, whereas many mature nanostructure substrates have been developed based on chemistry materials. In this work, a natural biointerface with unique biological properties is fabricated for efficient isolation and nondestructive release of CTCs from blood samples using the cancer cell membranes. The cell membrane interfaces are proved to have a good antiadhesion property for nonspecific cells because of their own electronegativity. A natural surface nanostructure is provided by the cancer cell membrane to nicely match with the surface nanotopography of CTCs. Bovine serum albumin (BSA) as a linker and DNA aptamer against the epithelial cell adhesion molecule (EpCAM) as a specific affinity molecule are then introduced onto the cell membrane interfaces to achieve the highly efficient and specific capture of CTCs. Finally, the captured target cells can be intactly released from the substrate using the complementary DNA sequence with controlling the incubation time. This study provides a smart strategy in the development of a natural biological interface for the isolation and release of CTCs with high purity.
The majority of current methods of isolating circulating tumor cells (CTCs) rely on a biomarker. However, the isolation efficiency may be compromised due to the heterogeneity of CTCs. In this work, a simple and broad-spectrum method is established to efficiently isolate the heterogeneous CTCs from patient blood samples using tannic acid (TA)-functionalized magnetic nanoparticles (MNPs). The TA-functionalized MNPs (MNPs-TA) inhibit the nonspecific adhesion of peripheral blood mononuclear cell (PBMC) and enhance cancer cell capture, resulting from the unique interaction between TA and glycocalyx on cancer cells. The MNPs-TA was demonstrated to effectively capture seven kinds of cancer cells (HeLa, PC-3, T24, MAD-MB-231, MCF-7, HT1080, A549) from artificial samples (62.3−93.7%). Moreover, this epithelial cell adhesion molecule (EpCAM)independent CTC isolation method was also tested using clinical blood samples from patients with different cancers (21 patients), which may provide a universal tool to detect CTCs in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.