Oily wastewater from industries has an adverse impact on the environment, human and aquatic life. Poly(vinylidene fluoride) (PVDF) membrane modified with a zwitterionic/hydrophobic pentapolymer (PP) with controlled pore size has been utilized to separate oil from water from their nano-emulsions. The PP has been synthesized in 91% yield via pentapolymerization of four different diallylamine salts [(CH2=CHCH2)2NH+(CH2)x A−], bearing CO2−, PO3H−, SO3−, (CH2)12NH2 pendants, and SO2 in a respective mol ratio of 25:36:25:14:100. Incorporating PP into PVDF has shown a substantially reduced membrane hydrophobicity; the contact angle decreased from 92.5° to 47.4°. The PP-PVDF membranes have demonstrated an excellent capability to deal with the high concentrations of nano-emulsions with a separation efficiency of greater than 97.5%. The flux recovery ratio (FRR) of PP-5 incorporated PVDF membrane was about 82%, which was substantially higher than the pristine PVDF.
Cycloterpolymerization of diallylaminoaspartic acid hydrochloride (I), maleic acid (II) and a cross-linker (III) afforded a new pH-responsive resin (IV), loaded with four CO2H and a chelating motif of NH+⋯CO2− in each repeating unit.
Polyvinylidene fluoride (PVDF) membrane-based systems for treating oily wastewater are prone to fouling. Herein, we introduced a novel mussel-inspired cationic amphiphilic terpolymer consisting of monomers N,N-diallyldimethylammonium chloride (DADMAC), N,N-diallyltetradecan-1-ammonium chloride (DTDAC), and mussel-inspired N,N-diallyldopamine hydrochloride (DADAHC) to improve the performance and characteristics of the PVDF membranes for oil-in-water emulsion separations. The cationic terpolymer, poly(DADMAC-co-DTDACco-DADAHC), shortened as PDDD, was synthesized in excellent yields via free radical polymerization and has good compatibility with the PVDF owing to the presence of hydrophobic long alkyl chains in DTDAC. The presence of dopamine motifs helps stabilize the PDDD-PVDF membrane by chelating with Fe 3+ ions. The water contact angle on the PDDD-incorporated PVDF membranes was reduced from 87.6 to 54.6°, demonstrating improved hydrophilicity than pristine PVDF (M-0). The incorporation of PDDD into the PVDF improved the separation efficiencies of the membrane, which reached up to 99% while treating the oil-in-water emulsions. Incorporating PDDD into PVDF has significantly enhanced the anti-fouling characteristics of the membranes, which are indicated by their remarkable flux recovery ratio (FRR) (up to 92%). The hydrophobic and hydrophilic groups worked synergetically to enhance the performance of the fabricated membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.