We demonstrate an autonomous, high-throughput mechanism for sorting of emulsion droplets with different sizes concurrently flowing in a microfluidic Hele-Shaw channel. The aqueous droplets of varying radii suspended in olive oil are separated into different streamlines across the channel upon interaction with a shallow (depth ∼ 700 nm) inclined guiding track ablated into the polydimethylsiloxane-coated surface of the channel with focused femtosecond laser pulses. Specifically, the observed differences in the droplet trajectories along the guiding track arise due to the different scaling of the confinement force attracting the droplets into the track, fluid drag, and wall friction, with the droplet radius. In addition, the distance traveled by the droplets along the track also depends on the track width, with wider tracks providing more stable droplet guiding for any given droplet size. We systematically study the influence of the droplet size and velocity on the trajectory of the droplets in the channel and analyze the sensitivity of size-based droplet sorting for varying flow conditions. The droplet guiding and sorting experiments are complemented by modeling of the droplet motion in the channel flow using computational fluid dynamics simulations and a previously developed model of droplet guiding. Finally, we demonstrate a complete separation of droplets produced by fusion of two independent droplet streams at the inlet of the Hele-Shaw channel from unfused daughter droplets. The presented droplet sorting technique can find applications in the development of analytical and preparative microfluidic protocols.
The electrical infrastructure around the globe is expanding at a rapid rate for the sake of fulfilling power demands in the domestic, commercial and entertainment industries aiming to boost the living standards. In this regard, renewable energy sources (RES) are globally accepted potential candidates for maintaining inexhaustible, clean, and reliable electricity with a supplementary feature of economic prospect. The efficiency of power distribution at reduced cost to the consumers can be further enhanced by introducing a two-way billing system so-called net-metering which has the potential to overcome issues such as voltage regulation, power blackouts, overstressed grid and need for expensive storage systems thereby making it beneficial for the grid and the end user. This envisioning has encouraged the Government of Pakistan to install net-metering infrastructure at places which accommodate surplus renewable energy reserves. According to the Electric Power Act 1997, the National Electric Power Regulatory Authority (NEPRA) issued the net-metering rules and regulations in September 2015 by the endorsement of Federal Government which allowed the distribution companies in Pakistan to buy surplus electricity units generated by the consumers in order to partly reimburse the units imported from the utility grid. The aim behind this research work is to promote renewable energy utilization through net-metering mechanism in order to achieve maximum power. The export of units from consumer side to utility grid and vice versa can be made through bidirectional energy meter. In this paper, a solar net-metering analysis has been carried out on ETAP software to determine its benefits in a distribution network. Different scenarios have been investigated, and it is concluded that solar net-metering technique has multiple influential benefits, e.g., improvement in voltage regulation, reduction in transmission and distribution losses, increase in power availability, less billing to consumers, and reduction of loading on utility grid.
Background: The primary motive of an electrical power system is to generate and supply electric power efficiently and reliably to the consumer-end. Transmission losses, system instability and increasing cost in proportion to demand are the main challenges faced in this process. Power flow analysis is required to robustly predict the active / reactive power within the buses, voltage magnitude / phase angles at each bus, cost of transmission and losses well before the practical installation of the power network. Methods/Statistical Analysis: In this paper, we employ power flow analysis using Newton Raphson method and Fast Decoupled method to minimize cost of the electricity and finding optimum active and reactive powers without affecting the voltage regulation. The power flow algorithms are applied for solving the aforementioned load flow problem for ring distribution network of Bahawalpur. We carried out the modeling by obtaining realistic data for constructing bus admittance matrix and specifications of generation units and loads which are connected at the buses. Findings: As a result, optimum flow of power along with the voltage values among different regions of Bahawalpur is obtained. The results from both the algorithms successfully converge and there is an absolute match to validate the accuracy. Novelty: These novel results are of paramount importance since the proposed architecture of Bahawalpur is ring distribution network to replace the existing radial network for improved performance. Furthermore, this research will pave the way for power system planning of Bahawalpur region where all the electrical parameters are known beforehand to design the components according to the requirement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.