Marble sludge powder is produced as a by-product during the cutting and polishing of marble. Similarly, sugarcane bagasse ash is produced during the burning operation of sugarcane bagasse. Improper disposal of these waste materials poses a severe threat to the environment. The objective of this research study was to partially substitute cement with a binary mixture of SBA and MSP to reduce the environmental and health issues by adequately utilizing the waste material in the production of low-cost and eco-friendly concrete. For this purpose, a total of 174 concrete cylinders were tested. Apart from this, XRF and EDX tests were performed to determine the chemical composition of waste. Ordinary Portland cement was replaced with a binary mix of SBA and MSP from 0 to 40% by weight to achieve the synergistic effect. Various tests were performed, including compressive and splitting tensile strength and material tests, i.e. specific gravity, absorption capacity, sieve analysis, dry rodded unit weight, and moisture content. The tested specimens were compared with the control samples. The results showed that the difference between compressive and tensile strength up to 15% replacement is within targeted strength and slump. The optimized sample by partial substitution with a negligible effect on properties of concrete was SB10-MP5 and SB5-MP10. The increase in partial replacement above 15% will lead to a decrease in compressive and tensile strength. The cost per cubic meter of concrete was reduced by 8% as per MRS2019.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.