Anthracnose, brown spot, mites, black rot, downy mildew, and leaf blight are six common grape leaf pests and diseases, which cause severe economic losses to the grape industry. Timely diagnosis and accurate identification of grape leaf diseases are decisive for controlling the spread of disease and ensuring the healthy development of the grape industry. This paper proposes a novel recognition approach that is based on improved convolutional neural networks for the diagnoses of grape leaf diseases. First, based on 4,023 images collected in the field and 3,646 images collected from public data sets, a data set of 107,366 grape leaf images is generated via image enhancement techniques. Afterward, Inception structure is applied for strengthening the performance of multidimensional feature extraction. In addition, a dense connectivity strategy is introduced to encourage feature reuse and strengthen feature propagation. Ultimately, a novel CNNbased model, namely, DICNN, is built and trained from scratch. It realizes an overall accuracy of 97.22% under the hold-out test set. Compared to GoogLeNet and ResNet-34, the recognition accuracy increases by 2.97% and 2.55%, respectively. The experimental results demonstrate that the proposed model can efficiently recognize grape leaf diseases. Meanwhile, this study explores a new approach for the rapid and accurate diagnosis of plant diseases that establishes a theoretical foundation for the application of deep learning in the field of agricultural information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.