Dirac semimetal (DSM) hosts four-fold degenerate isolated band-crossing points with linear dispersion, around which the quasiparticles resemble the relativistic Dirac Fermions. It can be described by a 4 × 4 massless Dirac Hamiltonian which can be decomposed into a pair of Weyl points or gaped into an insulator. Thus, crystal symmetry is critical to guarantee the stable existence. On the contrary, by breaking crystal symmetry, a DSM may transform into a Weyl semimetal (WSM) or a topological insulator (TI). Here, by taking hexagonal LiAuSe as an example, we find that it is a starfruit shaped multiple nodal chain semimetal in the absence of spin-orbit coupling 1 arXiv:1712.01475v1 [cond-mat.mtrl-sci] 5 Dec 2017 (SOC). In the presence of SOC, it is an ideal DSM naturally with the Dirac points locating at Fermi level exactly, and it would transform into WSM phase by introducing external Zeeman field or by magnetic doping with rare-earth atom Sm. It could also tranform into TI state by breaking rotational symmetry. Our studies show that DSM is a cirtical point for topological phase transition, and the conclusion can apply to most of the DSM materials, not limited to the hexagonal material LiAuSe.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.