A series of 3,4-disubstituted piperidine derivatives were obtained based on a conformational restriction strategy and a lead compound, A12, that exhibited potent in vitro and in vivo antitumor efficacies; however, obvious safety issues limited its further development. Thus, systematic exploration of the structure−activity relationship of compound A12, involving the phenyl group, hinge-linkage, and piperidine moiety, led to the discovery of the superior 3,4,6-trisubstituted piperidine derivative E22. E22 showed increased potency in Akt1 and cancer cell inhibition, remarkably reduced human ether-a-go-go-related gene blockage, and significantly improved safety profiles. Compound E22 also exhibited good kinase selectivity, had a good pharmacokinetic profile, and displayed very potent in vivo antitumor efficacy, with over 90% tumor growth inhibition in the SKOV3 xenograft model. Further mechanistic studies were conducted to demonstrate that compound E22 could significantly inhibit the phosphorylation of proteins downstream of Akt kinase in cells and tumor tissue from the xenograft model.
Rash is one of the primary dose-limiting toxicities of Akt (protein kinase B) inhibitors in clinical trials. Here, we demonstrate the inhibition of Akt2 isozyme may be a driver for keratinocyte apoptosis, which promotes us to search for new selective Akt inhibitors with an improved cutaneous safety property. According to our previous research, compound 2 is selected for further optimization for overcoming the disadvantages of compound 1, including high Akt2 inhibition and high toxicity against HaCaT keratinocytes. The dihedral angle-based design and molecular dynamics simulation lead to the identification of Hu7691 (B5) that achieves a 24-fold selectivity between Akt1 and Akt2. Hu7691 exhibits low activity in inducing HaCaT apoptosis, promising kinase selectivity, and excellent anticancer cell proliferation potencies. Based on the superior results of safety property, pharmacokinetic profile, and in vivo efficacy, the National Medical Products Administration (NMPA) approved the investigational new drug (IND) application of Hu7691.
The gain of cell motility is an essential prerequisite for cancer metastasis. The ubiquitin ligase subunit WD repeat and SOCS box-containing 1 (WSB1) has been demonstrated to regulate hypoxia-driven tumor cell migration. However, there is still a lack of methods for discovering inhibitors targeting the WSB1 axis. Here, we employed phenotypic screening models and identified compound 4 that displayed migration inhibitory activity against WSB1-overexpressing cells. Further studies indicated that it may function as a WSB1 degrader, thus leading to the accumulation of the Rho guanosine diphosphate dissociation inhibitor 2 (RhoGDI2) protein, reversing the expression of downstream F-actin and formation of membrane ruffles, and disturbing the migration capacity of cancer cells. Moreover, compound 4 exhibited a promising in vivo anticancer metastatic effects. Our findings show the discovery of a new WSB1 degrader, providing a unique solution for the treatment of cancer metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.