TMEM16A (ANO1) is a calcium-activated chloride channel (CaCC) expressed in secretory epithelia, smooth muscle, and other tissues. Cell-based functional screening of ∼110,000 compounds revealed compounds that activated TMEM16A CaCC conductance without increasing cytoplasmic Ca(2+). By patch-clamp, N-aroylaminothiazole "activators" (E(act)) strongly increased Cl(-) current at 0 Ca(2+), whereas tetrazolylbenzamide "potentiators" (F(act)) were not active at 0 Ca(2+) but reduced the EC(50) for Ca(2+)-dependent TMEM16A activation. Of 682 analogs tested, the most potent activator (E(act)) and potentiator (F(act)) produced large and more sustained CaCC Cl(-) currents than general agonists of Ca(2+) signaling, with EC(50) 3-6 μM and Cl(-) conductance comparable to that induced transiently by Ca(2+)-elevating purinergic agonists. Analogs of activators were identified that fully inhibited TMEM16A Cl(-) conductance, providing further evidence for direct TMEM16A binding. The TMEM16A activators increased CaCC conductance in human salivary and airway submucosal gland epithelial cells, and IL-4 treated bronchial cells, and stimulated submucosal gland secretion in human bronchi and smooth muscle contraction in mouse intestine. Small-molecule, TMEM16A-targeted activators may be useful for drug therapy of cystic fibrosis, dry mouth, and gastrointestinal hypomotility disorders, and for pharmacological dissection of TMEM16A function.
Over the past few years, three photorespiratory bypasses have been introduced into plants, two of which led to observable increases in photosynthesis and biomass yield. However, most of the experiments were carried out using Arabidopsis under controlled environmental conditions, and the increases were only observed under low-light and short-day conditions. In this study, we designed a new photorespiratory bypass (called GOC bypass), characterized by no reducing equivalents being produced during a complete oxidation of glycolate into CO 2 catalyzed by three rice-self-originating enzymes, i.e., glycolate oxidase, oxalate oxidase, and catalase. We successfully established this bypass in rice chloroplasts using a multi-gene assembly and transformation system. Transgenic rice plants carrying GOC bypass (GOC plants) showed significant increases in photosynthesis efficiency, biomass yield, and nitrogen content, as well as several other CO 2 -enriched phenotypes under both greenhouse and field conditions. Grain yield of GOC plants varied depending on seeding season and was increased significantly in the spring. We further demonstrated that GOC plants had significant advantages under high-light conditions and that the improvements in GOC plants resulted primarily from a photosynthetic CO 2 -concentrating effect rather than from improved energy balance. Taken together, our results reveal that engineering a newly designed chloroplastic photorespiratory bypass could increase photosynthetic efficiency and yield of rice plants grown in field conditions, particularly under high light.
BACKGROUND AND PURPOSET16Ainh-A01 is a recently identified inhibitor of the calcium-activated chloride channel TMEM16A. The aim of this study was to test the efficacy of T16Ainh-A01 for inhibition of calcium-activated chloride channels in vascular smooth muscle and consequent effects on vascular tone. EXPERIMENTAL APPROACHSingle channel and whole cell patch clamp was performed on single smooth muscle cells from rabbit pulmonary artery and mouse thoracic aorta. Isometric tension studies were performed on mouse thoracic aorta and mesenteric artery as well as human abdominal visceral adipose artery. KEY RESULTSIn rabbit pulmonary artery myocytes T16Ainh-A01 (1-30 mM) inhibited single calcium (Ca -activated Cl -channels in mouse thoracic aorta, and in both cell types, channel activity was abolished by two antisera raised against TMEM16A but not by a bestrophin antibody. The TMEM16A potentiator, Fact (10 mM), increased single channel and whole cell Ca 2+ -activated Cl -currents in rabbit pulmonary arteries. In isometric tension studies, T16Ainh-A01 relaxed mouse thoracic aorta pre-contracted with methoxamine with an IC50 of 1.6 mM and suppressed the methoxamine concentration-effect curve. T16Ainh-A01 did not affect the maximal contraction produced by 60 mM KCl and the relaxant effect of 10 mM T16Ainh-A01 was not altered by incubation of mouse thoracic aorta in a cocktail of potassium (K + ) channel blockers. T16Ainh-A01 (10 mM) also relaxed human visceral adipose arteries by 88 Ϯ 3%. CONCLUSIONS AND IMPLICATIONST16Ainh-A01 blocks calcium-activated chloride channels in vascular smooth muscle cells and relaxes murine and human blood vessels. Abbreviations
HrpN, a protein produced by the plant pathogenic bacterium Erwinia amylovora, has been shown to stimulate plant growth and resistance to pathogens and insects. Here we report that HrpN activates abscisic acid (ABA) signalling to induce drought tolerance (DT) in Arabidopsis thaliana L. plants grown with water stress. Spraying wild-type plants with HrpN-promoted stomatal closure decreased leaf transpiration rate, increased moisture and proline levels in leaves, and alleviated extents of damage to cell membranes and plant drought symptoms caused by water deficiency. In plants treated with HrpN, ABA levels increased; expression of several ABA-signalling regulatory genes and the important effector gene rd29B was induced or enhanced. Induced expression of rd29B, promotion of stomatal closure, and reduction in drought severity were observed in the abi1-1 mutant, which has a defect in the phosphatase ABI1, after HrpN was applied. In contrast, HrpN failed to induce these responses in the abi2-1 mutant, which is impaired in the phosphatase ABI2. Inhibiting wild-type plants to synthesize ABA eliminated the role of HrpN in promoting stomatal closure and reducing drought severity. Moreover, resistance to Pseudomonas syringae developed in abi2-1 as in wild-type plants following treatment with HrpN. Thus, an ABI2-dependent ABA signalling pathway is responsible for the induction of DT but does not affect pathogen defence under the circumstances of this study.
We conclude that the reduced dichoptic masking by the amblyopic eye, within the context of normally balanced interocular inhibition, produces the amblyopic suppression at mid to low frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.