This study was designed to examine the mechanisms by which systemic interleukin-1 affects neuroendocrine systems in the brain. Intraperitoneal injections of interleukin-1 beta (1.25 micrograms/rat) were administered to rats. One or three hours after injection, the expression levels of the immediate-early gene c-fos and of genes for several neuropeptides, receptors, and enzymes were examined by in situ hybridization histochemistry. In the brainstem at 1 hr, c-fos mRNA was elevated in the area postrema and nucleus of the solitary tract, but not in the locus coeruleus. At 3 hr, the c-fos mRNA levels had increased further in the nucleus of the solitary tract. Rostrally, elevations in c-fos mRNA levels were found in the hypothalamic and thalamic paraventricular nuclei, central nucleus of amygdala, bed nucleus of the stria terminalis, and medial preoptic area, peaking at 1 hr and diminishing at 3 hr. In addition, at 3 hr a new pattern of c-fos activity emerged--the arcuate nucleus and cells at the external margins throughout the brain now expressed c-fos mRNA. Corticotropin-releasing hormone mRNA levels were doubled in the paraventricular nucleus at 1 and 3 hr, concomitant with elevations in plasma adrenocorticotrophic hormone (ACTH) and corticosterone. Tyrosine hydroxylase mRNA levels in the brainstem did not change. The c-fos mRNA induction patterns reveal a temporally dynamic response to interleukin-1 administration. We propose that the early set of structures responding to interleukin-1 initiates the neuroendocrine response to cytokines. Coactivation of the area postrema and nucleus of the solitary tract may reflect entry into the brain and neural transduction of the peripheral signal. The late set--including the nucleus of the solitary tract, arcuate nucleus, and the brain's edge--may reflect cellular activation along the diffusion routes traveled by interleukin-1 or a bioactive transduction product, because the pattern of edge labeling is similar to the autoradiographic pattern of flow lf radiolabeled tracer substances in the cerebrospinal fluid. The late c-fos mRNA response to interleukin-1, therefore, may represent a demonstration of information transfer in the parasynaptic mode, also known as volume transmission.
It has been reported that acute ethanol intoxication exerts dose-dependent effects, both beneficial and detrimental, on the outcome of traumatic brain injury (TBI), although the mechanism(s) has not been determined. Given that pro-inflammatory cytokines are either neuroprotective or neurotoxic, depending on their tissue levels, ethanol-induced alterations in brain cytokine production may be involved in determining the recovery after TBI. The present study was undertaken to examine the effect of acute ethanol pretreatments (producing blood alcohol concentrations of 100+/-16 mg/dL, and 220+/-10 mg/dL, considered low and intoxicating doses, respectively) on interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) levels in discrete brain regions. In addition, serum corticosterone levels were also examined because the hormone is a modulator of cytokine production, its secretion is stimulated by ethanol, and it has been associated with the severity of post-injury neurologic dysfunction. The data presented in this report demonstrate that moderate cortical impact brain injury elicits a marked increase in IL-1beta and TNF-alpha in the injured cortex as well as in the hippocampus ipsilateral to the injury. Ethanol pretreatment lowered cytokine levels in the cortex, hippocampus and hypothalamus in a dose-dependent manner after TBI compared to the untreated injured rats. Serum corticosterone levels were markedly increased in the injured rats, and were further augmented in the ethanol-pretreated injured animals in a dose-dependent manner. Our findings suggest that ethanol-induced decrease in pro-inflammatory cytokine production may be linked to increased circulating corticosterone, both of which may contribute to the outcome of brain injury.
The purpose of the present investigation was to map chemically the distribution of certain neurotransmitter systems in the neostriatum of rats aged 6, 16, and 26 months. This mapping was carried out by microdissection of discrete striatal regions coupled with radiometric assays for choline acetyltransferase (ChAT), glutamate decarboxylase (GAD), dopamine (DA), and norepinephrine (NA). In all age groups, ChAT, DA, and NA were highest in the rostral relative to the caudal neostriatum. Additionally, ChAT was higher in the lateral than in the medial region, whereas GAD was more homogeneously distributed within the striatum. ChAT activity was decreased significantly primarily in the caudal regions in rats aged 16 and 26 months. DA levels were decreased in the caudal striatum in rats aged 26 months. NA levels were found to be significantly decreased primarily in the rostral neostriatal regions of the oldest rats. GAD activity remained unchanged in all age groups. These regional changes in selected neurotransmitter systems may underlie specific motor and cognitive deficits that often occur during aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.