Data mining is one of the important and beneficial technological developments in education and its usage area is becoming widespread day by day as it includes applications that contribute positively to teaching activities. By making raw data in the field of education meaningful using data mining techniques, teaching activities can be made more effective and efficient. Studies carried out in the field of education between 2014-2020 with data mining methods were scanned from the "Science Direct" database. As a result of scanning studies, 60 papers were found to be directly related to data mining in education. The studies include issues such as the development of e-learning systems, pedagogical support, clustering of educational data, and student performance predictions. These selected articles were analyzed in terms of purpose, application area, method, and contribution to the literature. This study aims to group the studies conducted in the field of education using the data mining method under certain headings, evaluate the methods and goals and present the need in this field to the researchers who will work in this field.
Doğal gaz talep tahmini, özellikle enerji tüketimi yüksek ülke ekonomilerinin karar vericileri, sanayi sektörü ve doğal gaz piyasasındaki tüm oyuncular için büyük önem taşımaktadır. Bu çalışma, meteorolojik parametrelere göre Türkiye'nin aylık doğal gaz talep tahmini modelini sunmayı amaçlamaktadır. Çalışmada Yapay Arı Kolonisi Algoritması (ABC), Yüklü Sistem Arama Algoritması (CSS), Karga Arama Algoritması (CSA) ve Harmoni Arama Algoritması (HSA) dört güncel metasezgisel algoritma ile oluşturulan modeller karşılaştırılmıştır. Araştırmada lineer, üstel (exponential) ve ikinci dereceden (quadratic) olmak üzere üç matematiksel model geliştirilmiş ve modellerin performansları altı farklı global hata ölçüm metrikleri (AE, MAE, R2, MAPE, RMS, MARNE) ile değerlendirilmiştir. Çalışmada ortalama sıcaklık, basınç, nem, rüzgar ve yağış meteorolojik veriler girdi parametreleri olarak kullanılmıştır. 2010-2017 yılları arasındaki veriler eğitim verileri, 2018-2020 yılları arasındaki veriler ise test verisi olarak uygulanmıştır. Doğal gaz talep tahmini eğitim veri seti için en başarılı tahmin eden model CSS algoritmasının quadratic modeliyken, test verilerinde ise en başarılı tahmin ABC algoritmasının quadratic modelidir.
In this study, a test device has been developed that can be used to test various vehicle cables and cable harnesses in the au tomotive sector. The test device can make basic measurements such as conductivity, short circuit, voltage, resistance, capacity, and specific measurements such as diodes and active relays among the number of test points varying between 128-1024. It performs the programmed tests step by step by processing the Test Source Code (*.tkk) files prepared with the designed Interface Program, loaded from the SD memory card in the device. The tester system consists of a selection of test source codes to be run and a general-purpose USB barcode reader, a general-purpose barcode printer, external LED units, an Optional External Unit (OHB) that offer a larger screen and various features if desired, and monitor. The OHB unit can be a Raspberry PI based mini-computer that can be mounted inside or outside the device, or any Windows based computer or Industrial computer can be used if desired. The test device realized has been operated stably with all its functions and has been successfully tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.