We introduce exactly solvable quantum parametric oscillators, which are generalizations of the quantum problems related with the classical orthogonal polynomials of Hermite, Laguerre, and Jacobi type, introduced in the work of Büyükaşık et al. [J. Math. Phys. 50, 072102 (2009)]. Quantization of these models with specific damping, frequency, and external forces is obtained using the Wei-Norman Lie algebraic approach. This determines the evolution operator exactly in terms of two linearly independent homogeneous solutions and a particular solution of the corresponding classical equation of motion. Then, time-evolution of wave functions and coherent states are found explicitly. Probability densities, expectation values, and uncertainty relations are evaluated and their properties are investigated under the influence of the external terms.
Time evolution of squeezed coherent states for a quantum parametric oscillator with the most general self-adjoint quadratic Hamiltonian is found explicitly. For this, we use the unitary displacement and squeeze operators in coordinate representation and the evolution operator obtained by the Wei-Norman Lie algebraic approach. Then, we analyze squeezing properties of the wave packets according to the complex parameter of the squeeze operator and the time-variable parameters of the Hamiltonian. As an application, we construct all exactly solvable generalized quantum oscillator models classically corresponding to a driven simple harmonic oscillator. For each model, defined according to the frequency modification in position space, we describe explicitly the squeezing and displacement properties of the wave packets. This allows us to see the exact influence of all parameters and make a basic comparison between the different models.
The time-dependent Schrödinger equation describing a generalized two-dimensional quantum parametric oscillator in the presence of time-variable external fields is solved using the evolution operator method. For this, the evolution operator is found as a product of exponential operators through the Wei–Norman Lie algebraic approach. Then, the propagator and time-evolution of eigenstates and coherent states are derived explicitly in terms of solutions to the corresponding system of coupled classical equations of motion. In addition, using the evolution operator formalism, we construct linear and quadratic quantum dynamical invariants that provide connection of the present results with those obtained via the Malkin–Man’ko–Trifonov and the Lewis–Riesenfeld approaches. Finally, as an exactly solvable model, we introduce a Cauchy–Euler type quantum oscillator with increasing mass and decreasing frequency in time-dependent magnetic and electric fields. Based on the explicit results for the uncertainties and expectations, squeezing properties of the wave packets and their trajectories in the two-dimensional configuration space are discussed according to the influence of the time-variable parameters and external fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.