This paper primarily examines the flowability, physical appearance, mass loss, residual compressive strength (RCS), and residual flexural strength (RFS) properties of steel (ST) and basalt (BA) fiber-added sustainable ultra-high performance geopolymer cement (UHPGPC) mortars exposed to hightemperature effects. According to the results obtained, ST and BA fibers adversely influence the workability properties of UHPGPC mortars and thus significantly reduce the spreading diameters of the mortars. However, ST and BA fibers substantially improve the RCS and RFS capacities of UHPGPC specimens exposed to high temperatures because they have a powerful bonding effect with the matrix and effectually restrict the development of micro-and macro-cracks with their bridging effect. Furthermore, this phenomenon is slightly more effective in hybrid form than using ST and BA fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.