Purpose
In this work, a true random number generator is designed by sampling the double-scroll analog continuous-time chaotic circuit signals.
Methodology
A Chua circuit based on memristance simulator is designed to obtain a non-linear term for a chaotic dynamic system. It is implemented on the board by using commercially available integrated circuits and passive elements. A low precision ADC which is commonly found in the market is used to sample the chaotic signals. The mathematical analysis of the chaotic circuit is verified by experimental results.
Originality
It is aimed to be one of the pioneering studies (including low precision ADC) in the literature on the implementation of memristive chaotic random number generators.
Findings
Two new methods are proposed for post-processing and creating random bit array using XOR operator and J-K flip flop. The bit stream obtained by a full-hardware implementation successfully passed the NIST-800-22 test. In this respect, the availability of the memristance simulator circuit, memristive chaotic double-scroll attractor, proposed random bit algorithm and the randomness of the memristive analog continuous-time chaotic true number generator were also verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.