Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a gradual decline of cognitive function. Early identification of AD is essential for managing the ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data can serve as a window into cognitive functioning and can be used to screen for early signs of AD. This paper describes methods for learning models using speech samples from the DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We consider two machine learning tasks: 1) binary classification to distinguish patients from healthy controls, and 2) regression to estimate each subject’s Mini-Mental State Examination (MMSE) score. To develop models that can use acoustic and/or language features, we explore a variety of dimension reduction techniques, training algorithms, and fusion strategies. Our best performing classification model, using language features with dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on a held-out test set. On the regression task, a linear regression model trained on a reduced set of language features achieves a root mean square error (RMSE) of 5.62 on the test set. These results demonstrate the promise of using machine learning for detecting cognitive decline from speech in AD patients.
Rates of Post-traumatic stress disorder (PTSD) have risen significantly due to the COVID-19 pandemic. Telehealth has emerged as a means to monitor symptoms for such disorders. This is partly due to isolation or inaccessibility of therapeutic intervention caused from the pandemic. Additional screening tools may be needed to augment identification and diagnosis of PTSD through a virtual medium. Sentiment analysis refers to the use of natural language processing (NLP) to extract emotional content from text information. In our study, we train a machine learning (ML) model on text data, which is part of the Audio/Visual Emotion Challenge and Workshop (AVEC-19) corpus, to identify individuals with PTSD using sentiment analysis from semi-structured interviews. Our sample size included 188 individuals without PTSD, and 87 with PTSD. The interview was conducted by an artificial character (Ellie) over a video-conference call. Our model was able to achieve a balanced accuracy of 80.4% on a held out dataset used from the AVEC-19 challenge. Additionally, we implemented various partitioning techniques to determine if our model was generalizable enough. This shows that learned models can use sentiment analysis of speech to identify the presence of PTSD, even through a virtual medium. This can serve as an important, accessible and inexpensive tool to detect mental health abnormalities during the COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.