Three-dimensional (3D) reconstruction and finite element analysis (FEA) have been extensively used to simulate cervical biomechanics. However, instructive articles providing full descriptions for operating Mimics software, Geomagic software, and FEA are rare in the literature. This omission has hindered research and development related to cervical spine biomechanics. Herein, we expound a detailed and easily understandable protocol for performing a digital biomechanics study which may facilitate a better understanding of the internal anatomy mechanics and the investigation of novel screw fixation techniques.We describe step-by-step instructions for use of Mimics and Geomagic software in FEA, along with a concise literature review. The key procedures of digital FEA stepwise instruction are presented, accompanied by a brief but complete report on the computed tomography (CT) imaging data for establishing the final finite element model. Previous publications regarding the commonly used software are also reviewed and discussed. Each piece of software performs a specific function for digital FEA establishment and each has its inherent shortcomings, making it is necessary to combine the software to leverage the advantages of each in order to best serve finite element research. For reasons of brevity, this study only provides an illustrative report on a small key part of finite element research in the cervical spine. These stepwise instructions can guide orthopedic researchers in conducting FEA studies in digital cervical biomechanics.
Short-carbon-fiber (SCF)–reinforced poly-ether-ether-ketone (PEEK) is a promising polymer composite material with good biocompatibility, a high strength-to-weight ratio, and low friction properties. In artificial-bone fabrication and other applications with more flexible fabrication demands, fused-deposition modeling (FDM) technology enables the rapid and low-cost fabrication of SCF/PEEK parts with sophisticated structures. Owing to the high viscosity of melting PEEK composites, great challenges, associated with the poor internal interface, need to be overcome before enhanced mechanical properties can be obtained. In this study, key processing parameters and various SCF amounts were studied to investigate their effects on the mechanical properties of PEEK composites. It was revealed that the existence of voids and gaps between the SCF and PEEK led to a decrease in the strength of the composite systems. The FDM processing parameters were tuned to eliminate these defects in the PEEK composites. The tensile strength of the 2% SCF/PEEK sample reached 96.4 MPa, which is comparable to that of PEEK parts prepared by injection molding. Meanwhile, its elastic modulus reached 2.6 GPa, which is 169% higher than that of the bare PEEK sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.