The inflammasome-mediated cleavage of gasdermin D (GSDMD) causes pyroptosis and inflammatory cytokine release to control pathogen infection, but how pathogens evade this immune response remains largely unexplored. Here we identify the known protein phosphatase PtpB from
Mycobacterium tuberculosis
as a phospholipid phosphatase inhibiting the host inflammasome-pyroptosis pathway. Mechanistically, PtpB dephosphorylated phosphatidylinositol-4-monophosphate and phosphatidylinositol-(4,5)-bisphosphate in host cell membrane, thus disrupting the membrane localization of the cleaved GSDMD to inhibit cytokine release and pyroptosis of macrophages. Notably, this phosphatase activity requires PtpB binding to ubiquitin. Disrupting phospholipid phosphatase activity or the ubiquitin-interacting motif of PtpB enhanced host GSDMD-dependent immune responses and reduced intracellular pathogen survival. Thus, pathogens inhibit pyroptosis and counteract host immunity by altering host membrane composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.