As the population ages, so does the demand for bone loss treatments. The main components of these medicines must be able to endure longer and perform more effectively. Bone cement made of poly (methyl methacrylate) (PMMA), which is often used in damaged bone replacement surgery, is a vital biological material. As a result, the impact of additional nanoparticles such as zirconium dioxide (Zr02) and magnesium oxide (MgO) on polymer binary blends (Acrylic bone cement: 15% PMMA) for a bone scaffold was studied in this research. ZrO2 and MgO nanoparticles were introduced in various weights present to the polymer mix matrix 0, 0.5, 1, 1.5, 2). Hand lay-up molding using two different types of PMMA material was utilized to create the polymer. The reinforcement materials were mixed individually with a binary polymer blend material according to the reinforcement material selection ratio, and then heat-treated at 55°C for 3 hours to complete polymerization and remove any residual stress. Mechanical characteristics such as tensile strength and Young's modulus were evaluated for all of the prepared samples. The chemical bonding of nanoparticles and synthetic binary polymeric mix composites was evaluated using Fourier transform infrared spectroscopy (FTIR). The tensile strength and Young's modulus of a binary polymeric blend reinforced with (1.5wt% ZrO2, and 1wt% MgO) both dramatically increased. A scanning electron microscope (SEM) was used to examine the surface morphology of the fracture surface of tensile specimens. SEM images demonstrated that nanoparticles (ZrO2 and MgO) were distributed uniformly throughout the polymeric mix matrix.
The main methods for preventing fires are physical, chemical, or a combination of the two. One of the main thermophysical characteristics that connect the chemical structure is thermal diffusivity. The relationship between heat transport as well as heat resistance has been thoroughly established in the literature. Heat transmission can also be connected to various fire-retardant characteristics, like maximal heat release or time to ignite, which rank among the most crucial factors in defining the potential fire danger of a specific material. The thermal stability, as well as fire-retardant qualities of polymers, are enhanced by metal oxides. In the present investigation, simulations of molecular dynamics constructed using the single atom approach was used to examine the consequence of Al2O3nanoparticles on thermal transfer of isotactic polymethyl methacrylate. Capacity, density, and thermal transfer were studied in the 300-700 K range to examine the heat transfer rate of poly (methyl methacrylate) besides poly (methyl methacrylate)/Al2O3nanocomposite. It is possible to calculate heat capacity using fluctuating characteristics. Conductivity was calculated through a non-equilibrium modeling simulation using Fourier's law. The thermal diffusivity of the poly (methyl methacrylate) with the thermal conductivity is increased by over ten times by the alumina nanoparticles, which also enhances the Tg by around 10 K The results show that the Al2O3nanoparticles increase a transition temperature of glass; conductivity, in addition diffusivity of the poly (methyl methacrylate) while decreasing the heat capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.