Polarimetric decomposition extracts scattering features that are indicative of the physical characteristics of the target. In this study, three polarimetric decomposition methods were tested for soil moisture estimation over agricultural fields using machine learning algorithms. Features extracted from model-based Freeman–Durden, Eigenvalue and Eigenvector based H/A/α, and Van Zyl decompositions were used as inputs in random forest and neural network regression algorithms. These algorithms were applied to retrieve soil moisture over soybean, wheat, and corn fields. A time series of polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data acquired during the Soil Moisture Active Passive Experiment 2012 (SMAPVEX12) field campaign was used for the training and validation of the algorithms. Three feature selection methods were tested to determine the best input features for the machine learning algorithms. The most accurate soil moisture estimates were derived from the random forest regression algorithm for soybeans, with a correlation of determination (R2) of 0.86, root mean square error (RMSE) of 0.041 m3 m−3 and mean absolute error (MAE) of 0.030 m3 m−3. Feature selection also impacted results. Some features like anisotropy, Horizontal transmit and Horizontal receive (HH), and surface roughness parameters (correlation length and RMS-H) had a direct effect on all algorithm performance enhancement as these parameters have a direct impact on the backscattered signal.
Abstract. Soil moisture content plays a pivotal role in biomass development of vegetation coverage at various growth stages. Moisture content of the soil is considered as a crucial parameter for agricultural studies which directly leads to higher fertility rate. Remote sensing techniques, specifically Synthetic Aperture Radar (SAR) sensors, provides suitable opportunity for continuous soil moisture monitoring at various spatial and temporal resolutions. In this study, field campaigns conducted to measure soil surface parameters, including soil moisture and roughness, synchronized with Sentinel-1 pass over an agricultural region near Mohammadshahr, Iran. Fieldwork for soil moisture sampling have done during plants’ (canola and winter wheat) growth stages. The Gradient Boosted Regression Tree (GBRT), eXtreme Gradient Boosted (XGB), and Random Forest (RF) machine learning algorithms were employed to model the relationship between the ground measured soil moisture and polarimetric SAR derived features from Sentinel-1 imageries. The results showed promising results obtained for soil moisture estimation using the dual-polarized SAR dataset over crop-covered agricultural fields with R2 = 0.95 and RMSE = 0.023 m3 m−3 using the GBRT regression model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.