In this Letter, we demonstrate strong light emission from defective hexagonal boron nitride (hBN) defect centers upon their coupling with disorder near-touching plasmonic units. Based on numerical simulations and characterization results, the plasmonic design at thin layer thicknesses of 20 nm can provide above 2 orders of magnitude enhancement in photoluminescence (PL) spectra. Moreover, this plasmonic platform shortens the luminescence lifetime of the emitters. The proposed design can be easily extended to other plasmonic-emitter combinations where strong light–matter interaction can be achieved using large-scale compatible routes.
The colorimetric detection of bio-agent targets has attracted considerable attention in nanosensor designs. This platform provides an easy to use, real-time, and rapid sensing approach, as the color change can be easily distinguished by the naked eye. In this Letter, we propose a large scale compatible fabrication route to realize colorimetric optical nanosensors with a novel configuration. For this purpose, we design and fabricate a tightly packed disordered arrangement of Fabry–Perot based metal–insulator–metal nanoantennas with a resonance frequency at visible light wavelengths. In this design, the adsorbed bio-agent changes the effective refractive index of the cavity, and this causes a shift in the resonance wavelength. The experimental data show that the proposed design can have sensitivity values
>
70
n
m
/
r
e
f
r
a
c
t
i
v
e
index unit. Unlike other optical sensing schemes that rely mainly on hot spot formation and field enhancement, this design has a large active area with relatively uniform patterns that make it a promising approach for low-level and reliable bio-detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.