The main objective of this paper is to propose a novel method that provides an opportunity to evaluate an orthodontic process at early phase of the treatment. This was accomplished by finding out a correlation between the applied orthodontic force and thermal variations in the tooth structure. To this end, geometry of the human tooth surrounded by the connective soft tissue called the periodontal ligament and the bone was constructed by employing dental CT scan images of a specific case. The periodontal ligament was modeled by finite strain viscoelastic model through a nonlinear stress-strain relation (hyperelasticity) and nonlinear stress-time relation (viscoelasticity). The tooth structure was loaded by a lateral force with 15 different quantities applied to 20 different locations, along the midedge of the tooth crown. The resultant compressive stress in the periodontal ligament was considered as the cause of elevated cell activity that was modeled by a transient heat flux in the thermal analysis. The heat flux value was estimated by conducting an experiment on a pair of rats. The numerical results showed that by applying an orthodontic force to the tooth structure, a significant temperature rise was observed. By measuring the temperature rise, the orthodontic process can be evaluated. KEYWORDS finite element method, mechanical stress, orthodontic loading, thermal analysis, viscohyperelastic behavior
The stability of dispersed nanoparticles in the base fluid has always been one of the most important challenges in using nanofluids as a coolant in heat transfer applications in different industries such as modern electronic equipment, heat exchangers, solar technologies, etc. In the present study, the dynamic light scattering (DLS) method is used to obtain the particle size distribution of Al2O3-ZnO dispersed in DI water. After adjusting the optical arrangement and designing the DLS setup, the correlation curves are plotted by analyzing the detected signals of the experiments. Then, a decay rate is derived by fitting an exponential function to the correlation curve to get the particle size distribution by using the Stoke-Einstein equation. In order to investigate the stability of Al2O3-ZnO water-based nanofluid, the particle size distribution profiles are studied several times. In addition, the stability of Al2O3-ZnO-CNT hybrid nanofluid is followed by absorbance measurements using a UV-Vis spectrophotometer. Moreover, the thermal conductivity coefficient and electrical conductivity of the Al2O3-ZnO hybrid nanofluid with and without CNT particles are determined by utilizing KD2 Pro and PCT-407 devices, respectively. The results showed that the peak in the particle size distribution curve for Al2O3-ZnO hybrid nanofluid shifted from 476 nm to 128 nm after 5 days. Furthermore, the inclusion of carbon nanotubes increased the stability of zinc oxide particles in the nanofluid. In addition, by adding carbon nanotubes in a ratio of 1:1:0.5 to Al2O3-ZnO nanofluid and forming 0.05 wt.% hybrid nanofluid, the thermal conductivity coefficient was enhanced by 30% in comparison with deionized water, while a 0.05 wt.% hybrid nanofluid without CNT particles improved the thermal conductivity by 19%. Although the electrical conductivity increased by adding nanoparticles to the base fluid, it didn’t change significantly for nanofluids containing CNTs compared to nanofluids without CNT particles.
Carbon nanotubes (CNTs) have emerged as efficient tools in drug delivery systems; therefore, it is essential to refer to the importance of the magnetic field, in addition to the fluid flow on the dynamic behavior of CNTs. Additionally, in such medical applications, the actual working environment of nanotube often contains temperature changes, and CNTs are surrounded by soft tissues with viscoelastic mechanical properties. In this study, the vibrational behavior of CNTs conveying magnetic-fluid flow and resting on a viscoelastic foundation is investigated under various temperature variations. To incorporate the influence of slip velocity at the nanoscale, a correction factor is employed on the basis of the Beskok–Karniadakis model. The nanotube is modeled by the Euler–Bernoulli beam theory, and governing equations of motion are derived by implementing Hamilton’s principle based on Eringen’s nonlocal elasticity theory. Results indicate that by applying a magnetic field with an intensity of 30[Formula: see text]T, the dimensionless critical flow velocity increases from 4.345 to 12.603. Also, the critical flow velocity shows an increase from 4.345 to 5.854 in the presence of a viscoelastic foundation. Furthermore, a temperature variation equal to 20[Formula: see text]K reduces the critical flow velocity dramatically from 4.345 to 1.802 at low temperatures, while an increase from 4.345 to 5.443 is observed at high temperatures. Consequently, while the magnetic field and the viscoelastic foundation affect the system stability, the temperature variation may improve or deteriorate the stability. Therefore, to plan for a medical application, the inclusion of temperature variation is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.