Natural hazards are diverse and uneven in time and space, therefore, understanding its complexity is key to save human lives and conserve natural ecosystems. Reducing the outputs obtained after each modelling analysis is key to present the results for stakeholders, land managers and policymakers. So, the main goal of this survey was to present a method to synthesize three natural hazards in one multi-hazard map and its evaluation for hazard management and land use planning. To test this methodology, we took as study area the Gorganrood Watershed, located in the Golestan Province (Iran). First, an inventory map of three different types of hazards including flood, landslides, and gullies was prepared using field surveys and different official reports. To generate the susceptibility maps, a total of 17 geo-environmental factors were selected as predictors using the MaxEnt (Maximum Entropy) machine learning technique. The accuracy of the predictive models was evaluated by drawing receiver operating characteristic-ROC curves and calculating the area under the ROC curve-AUCROC. The MaxEnt model not only implemented superbly in the degree of fitting, but also obtained significant results in predictive performance. Variables importance of the three studied types of hazards showed that river density, distance from streams, and elevation were the most important factors for flood, respectively. Lithological units, elevation, and annual mean rainfall were relevant for detecting landslides. On the other hand, annual mean rainfall, elevation, and lithological units were used for gully erosion mapping in this study area. Finally, by combining the flood, landslides, and gully erosion susceptibility maps, an integrated multi-hazard map was created. The results demonstrated that 60% of the area is subjected to hazards, reaching a proportion of landslides up to 21.2% in the whole territory. We conclude that using this type of multi-hazard map may be a useful tool for local administrators to identify areas susceptible to hazards at large scales as we demonstrated in this research.
Soil erosion is a serious problem affecting numerous countries, especially, gully erosion. In the current research, GIS techniques and MARS (Multivariate Adaptive Regression Splines) algorithm were considered to evaluate gully erosion susceptibility mapping among others. The study was conducted in a specific section of the Gorganroud Watershed in Golestan Province (Northern Iran), covering 2142.64 km2 which is intensely influenced by gully erosion. First, Google Earth images, field surveys, and national reports were used to provide a gully-hedcut evaluation map consisting of 307 gully-hedcut points. Eighteen gully erosion conditioning factors including significant geoenvironmental and morphometric variables were selected as predictors. To model sensitivity of gully erosion, Multivariate Adaptive Regression Splines (MARS) was used while the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC), drawing ROC curves, efficiency percent, Yuden index, and kappa were used to evaluate model efficiency. We used two different scenarios of the combination of the number of replications, and sample size, including 90%/10% and 80%/20% with 10 replications, and 70%/30% with five, 10, and 15 replications for preparing gully erosion susceptibility mapping (GESM). Each one involves a various subset of both positive (presence), and negative (absence) cases. Absences were extracted as randomly distributed individual cells. Therefore, the predictive competency of the gully erosion susceptibility model and the robustness of the procedure were evaluated through these datasets. Results did not show considerable variation in the accuracy of the model, with altering the percentage of calibration to validation samples and number of model replications. Given the accuracy, the MARS algorithm performed excellently in predictive performance. The combination of 80%/20% using all statistical measures including SST (0.88), SPF (0.83), E (0.79), Kappa (0.58), Robustness (0.01), and AUC (0.84) had the highest performance compared to the other combinations. Consequently, it was found that the performance of MARS for modelling gully erosion susceptibility is quite consistent while changes in the testing and validation specimens are executed. The intense acceptable prediction capability of the MARS model verifies the reliability of the method employed for use of this model elsewhere and gully erosion studies since they are qualified to quickly generating precise and exact GESMs (gully erosion sensitivity maps) to make decisions and management edaphic and hydrologic features.
Soil and water conservation in natural and cultivated areas is a major concern for humankind. However, there are severe problems with degraded hillslopes due to bare soils in northern Iran, which are one of the most important factors driving land degradation processes. Subsequently, soil erosion, pollutant transport, and/or nutrient impoverishment are affecting large territories; therefore, rapid and inexpensive soil conservation measures need to be implemented. The use of vegetative buffer strips could be an effective strategy to reduce pollutant transport as well as soil erosion.Thus, this research aimed to investigate the possible efficiency of two different vegetative buffer strips composed of vetiver-grass (Chrysopogon zizanioides) and native turf-grass (Festuca arundinacea) at reducing runoff and soil losses as well as nitrate transport on a representative degraded hillslope with bare soils in Mazandaran, Iran.Twelve 10 m 2 experimental plots were tested over 1 year using a runoff simulator that produced overland flow that corresponded to the 25-and 100-year return period rainfall events. The plots with bare soils had the highest runoff volumes (30.5 and 55.4 L m −2 ), sediment concentrations (101.2 and 430.6 g L −1 ), and nitrate concentrations (10.4 and 37.6 mg L −1 ). Vetiver was the most useful tool to reduce runoff, soil loss, and nitrate concentration, with values of 13.4 and 28.6 L m −2 , 13.4 and 90.9 g L −1 , and 2.9 and 16.4 mg L −1 , respectively. Of the treatments investigated, vetiver provided the most rapid cover and was the most efficient at preventing soil erosion and nitrate transport directly after plantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.