In this work, we study the stability of a one-dimensional Timoshenko system with localized internal fractional kelvin-Voigt damping in a bounded domain. First, we reformulate the system into an augmented model and using a general criteria of Arendt-Batty we prove the strong stability. Next, we investigate three cases: the first one when the damping is localized in the bending moment, the second case when the damping is localized in the shear stress, we prove that the energy of the system decays polynomially with rate t −1 in both cases. In the third case, the fractional Kelvin-Voigt is acting on the shear stress and the bending moment simultaneously. We show that the system is polynomially stable with decay rate of type t −4 2−α . The method is based on the frequency domain approach combined with multiplier technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.