Purpose Based on medical reports, it is hard to find levels of different hospitalized symptomatic COVID-19 patients according to their features in a short time. Besides, there are common and special features for COVID-19 patients at different levels based on physicians’ knowledge that make diagnosis difficult. For this purpose, a hierarchical model is proposed in this paper based on experts’ knowledge, fuzzy C-mean (FCM) clustering, and adaptive neuro-fuzzy inference system (ANFIS) classifier. Methods Experts considered a special set of features for different groups of COVID-19 patients to find their treatment plans. Accordingly, the structure of the proposed hierarchical model is designed based on experts’ knowledge. In the proposed model, we applied clustering methods to patients’ data to determine some clusters. Then, we learn classifiers for each cluster in a hierarchical model. Regarding different common and special features of patients, FCM is considered for the clustering method. Besides, ANFIS had better performances than other classification methods. Therefore, FCM and ANFIS were considered to design the proposed hierarchical model. FCM finds the membership degree of each patient’s data based on common and special features of different clusters to reinforce the ANFIS classifier. Next, ANFIS identifies the need of hospitalized symptomatic COVID-19 patients to ICU and to find whether or not they are in the end-stage (mortality target class). Two real datasets about COVID-19 patients are analyzed in this paper using the proposed model. One of these datasets had only clinical features and another dataset had both clinical and image features. Therefore, some appropriate features are extracted using some image processing and deep learning methods. Results According to the results and statistical test, the proposed model has the best performance among other utilized classifiers. Its accuracies based on clinical features of the first and second datasets are 92% and 90% to find the ICU target class. Extracted features of image data increase the accuracy by 94%. Conclusion The accuracy of this model is even better for detecting the mortality target class among different classifiers in this paper and the literature review. Besides, this model is compatible with utilized datasets about COVID-19 patients based on clinical data and both clinical and image data, as well. Highlights • A new hierarchical model is proposed using ANFIS classifiers and FCM clustering method in this paper. Its structure is designed based on experts’ knowledge and real medical process. FCM reinforces the ANFIS classification learning phase based on the features of COVID-19 patients. • Two real datasets about COVID-19 patients are studied in this paper. One of these datasets has both clinical and image data. Therefore, appropriate features are extracted based on its image data and considered with ava...
PurposeThis paper aims to analyze the socioeconomic impacts of infectious diseases based on uncertain behaviors of social and effective subsystems in the countries. The economic impacts of infectious diseases in comparison with predicted gross domestic product (GDP) in future years could be beneficial for this aim along with predicted social impacts of infectious diseases in countries.Design/methodology/approachThe proposed uncertain SEIAR (susceptible, exposed, infectious, asymptomatic and removed) model evaluates the impacts of variables on different trends using scenario base analysis. This model considers different subsystems including healthcare systems, transportation, contacts and capacities of food and pharmaceutical networks for sensitivity analysis. Besides, an adaptive neuro-fuzzy inference system (ANFIS) is designed to predict the GDP of countries and determine the economic impacts of infectious diseases. These proposed models can predict the future socioeconomic trends of infectious diseases in each country based on the available information to guide the decisions of government planners and policymakers.FindingsThe proposed uncertain SEIAR model predicts social impacts according to uncertain parameters and different coefficients appropriate to the scenarios. It analyzes the sensitivity and the effects of various parameters. A case study is designed in this paper about COVID-19 in a country. Its results show that the effect of transportation on COVID-19 is most sensitive and the contacts have a significant effect on infection. Besides, the future annual costs of COVID-19 are evaluated in different situations. Private transportation, contact behaviors and public transportation have significant impacts on infection, especially in the determined case study, due to its circumstance. Therefore, it is necessary to consider changes in society using flexible behaviors and laws based on the latest status in facing the COVID-19 epidemic.Practical implicationsThe proposed methods can be applied to conduct infectious diseases impacts analysis.Originality/valueIn this paper, a proposed uncertain SEIAR system dynamics model, related sensitivity analysis and ANFIS model are utilized to support different programs regarding policymaking and economic issues to face infectious diseases. The results could support the analysis of sensitivities, policies and economic activities.Highlights:A new system dynamics model is proposed in this paper based on an uncertain SEIAR model (Susceptible, Exposed, Infectious, Asymptomatic, and Removed) to model population behaviors;Different subsystems including healthcare systems, transportation, contacts, and capacities of food and pharmaceutical networks are defined in the proposed system dynamics model to find related sensitivities;Different scenarios are analyzed using the proposed system dynamics model to predict the effects of policies and related costs. The results guide lawmakers and governments' actions for future years;An adaptive neuro-fuzzy inference system (ANFIS) is designed to estimate the gross domestic product (GDP) in future years and analyze effects of COVID-19 based on them;A real case study is considered to evaluate the performances of the proposed models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.