Smart manufacturing systems are growing based on the various requests for predicting the reliability and quality of equipment. Many machine learning techniques are being examined to that end. Another issue which considers an important part of industry is data security and management. To overcome the problems mentioned above, we applied the integrated methods of blockchain and machine learning to secure system transactions and handle a dataset to overcome the fake dataset. To manage and analyze the collected dataset, big data techniques were used. The blockchain system was implemented in the private Hyperledger Fabric platform. Similarly, the fault diagnosis prediction aspect was evaluated based on the hybrid prediction technique. The system’s quality control was evaluated based on non-linear machine learning techniques, which modeled that complex environment and found the true positive rate of the system’s quality control approach.
The emergence of biomedical sensor devices, wireless communication, and innovation in other technologies for healthcare applications result in the evolution of a new area of research that is termed as Wireless Body Area Networks (WBANs). WBAN originates from Wireless Sensor Networks (WSNs), which are used for implementing many healthcare systems integrated with networks and wireless devices to ensure remote healthcare monitoring. WBAN is a network of wearable devices implanted in or on the human body. The main aim of WBAN is to collect the human vital signs/physiological data (like ECG, body temperature, EMG, glucose level, etc.) round-the-clock from patients that demand secure, optimal and efficient routing techniques. The efficient, secure, and reliable designing of routing protocol is a difficult task in WBAN due to its diverse characteristic and restraints, such as energy consumption and temperature-rise of implanted sensors. The two significant constraints, overheating of nodes and energy efficiency must be taken into account while designing a reliable blockchain-enabled WBAN routing protocol. The purpose of this study is to achieve stability and efficiency in the routing of WBAN through managing temperature and energy limitations. Moreover, the blockchain provides security, transparency, and lightweight solution for the interoperability of physiological data with other medical personnel in the healthcare ecosystem. In this research work, the blockchain-based Adaptive Thermal-/Energy-Aware Routing (ATEAR) protocol for WBAN is proposed. Temperature rise, energy consumption, and throughput are the evaluation metrics considered to analyze the performance of ATEAR for data transmission. In contrast, transaction throughput, latency, and resource utilization are used to investigate the outcome of the blockchain system. Hyperledger Caliper, a benchmarking tool, is used to evaluate the performance of the blockchain system in terms of CPU utilization, memory, and memory utilization. The results show that by preserving residual energy and avoiding overheated nodes as forwarders, high throughput is achieved with the ultimate increase of the network lifetime. Castalia, a simulation tool, is used to evaluate the performance of the proposed protocol, and its comparison is made with Multipath Ring Routing Protocol (MRRP), thermal-aware routing algorithm (TARA), and Shortest-Hop (SHR). Evaluation results illustrate that the proposed protocol performs significantly better in balancing of temperature (to avoid damaging heat effect on the body tissues) and energy consumption (to prevent the replacement of battery and to increase the embedded sensor node life) with efficient data transmission achieving a high throughput value.
One of the essential points of food manufacturing in the industry and shelf life of the products is to improve the food traceability system. In recent years, the food traceability mechanism has become one of the emerging blockchain applications in order to improve the anti-counterfeiting area’s quality. Many food manufacturing systems have a low level of readability, scalability, and data accuracy. Similarly, this process is complicated in the supply chain and needs a lot of time for processing. The blockchain system creates a new ontology in the traceability system supply chain to deal with these issues. In this paper, a blockchain machine learning-based food traceability system (BMLFTS) is proposed in order to combine the new extension in blockchain, Machine Learning technology (ML), and fuzzy logic traceability system that is based on the shelf life management system for manipulating perishable food. The blockchain technology in the proposed system has been developed in order to address light-weight, evaporation, warehouse transactions, or shipping time. The blockchain data flow is designed to show the extension of ML at the level of food traceability. Finally, reliable and accurate data are used in a supply chain to improve shelf life.
With the spread of COVID-19, the “untact” culture in South Korea is expanding and customers are increasingly seeking for online services. A recommendation system serves as a decision-making indicator that helps users by suggesting items to be purchased in the future by exploring the symmetry between multiple user activity characteristics. A plethora of approaches are employed by the scientific community to design recommendation systems, including collaborative filtering, stereotyping, and content-based filtering, etc. The current paradigm of recommendation systems favors collaborative filtering due to its significant potential to closely capture the interest of a user as compared to other approaches. The collaborative filtering harnesses features like user-profile details, visited pages, and click information to determine the interest of a user, thereby recommending the items that are related to the user’s interest. The existing collaborative filtering approaches exploit implicit and explicit features and report either good classification or prediction outcome. These systems fail to exhibit good results for both measures at the same time. We believe that avoiding the recommendation of those items that have already been purchased could contribute to overcoming the said issue. In this study, we present a collaborative filtering-based algorithm to tackle big data of user with symmetric purchasing order and repetitive purchased products. The proposed algorithm relies on combining extreme gradient boosting machine learning architecture with word2vec mechanism to explore the purchased products based on the click patterns of users. Our algorithm improves the accuracy of predicting the relevant products to be recommended to the customers that are likely to be bought. The results are evaluated on the dataset that contains click-based features of users from an online shopping mall in Jeju Island, South Korea. We have evaluated Mean Absolute Error, Mean Square Error, and Root Mean Square Error for our proposed methodology and also other machine learning algorithms. Our proposed model generated the least error rate and enhanced the prediction accuracy of the recommendation system compared to other traditional approaches.
The battery management system in an electric vehicle must be reliable and durable to forecast the state of charge. Considering that battery degradation is generally nonlinear, state of charge (SOC) estimation with lower degradation can be challenging. Lithium-ion batteries are highly dependent on the knowledge of aging, which is usually costly or not available online. In this paper, we suggest the state of charge estimation of lithium-ion battery systems by using an extreme gradient boosting algorithm for electric vehicles application, which acquires the nonlinear relationship model can with offline training. The extreme gradient boosting algorithm is the tree on based learning, which effectively performs and speeds. Voltage-time data used as an input of this system from the partial constant current phase; the proposed algorithm improves the accuracy of predicting the relevant. Additionally, no initial state of charge is required in our proposed method; thus, estimating the state of charge can consider each battery state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.