The main propagation approach is tissue culture in blueberries, and tissue culture is an effective and low-cost method with higher economic efficiency in blueberries. However, there is a lack of stable and efficient production systems of industrialization of tissue culture in blueberries. In this study, the high-efficiency tissue culture and rapid propagation technology system were established based on blueberry leaves and stems. The optimal medium for callus induction was WPM (woody plant medium) containing 2.0 mg/L Forchlorfenuron (CPPU), 0.2 mg/L 2-isopentenyladenine (2-ip) with a 97% callus induction rate and a callus differentiation rate of 71% by using blueberry leaves as explants. The optimal secondary culture of the leaf callus medium was WPM containing 3.0 mg/L CPPU with an increment coefficient of 24%. The optimal bud growth medium was WPM containing 1.0 mg/L CPPU, 0.4 mg/L 2-ip, with which the growth of the bud was better, stronger and faster. The optimal rooting medium was 1/2 Murashige and Skoog (1/2MS) medium containing 2.0 mg/L naphthylacetic acid (NAA), with which the rooting rate was 90% with shorter rooting time and more adventitious root. In addition, we established a regeneration system based on blueberry stems. The optimal preculture medium in blueberry stem explants was MS medium containing 2-(N-morpholino) ethanesulfonic acid (MES) containing 0.2 mg/L indole-3-acetic acid (IAA), 0.1 mg/L CPPU, 100 mg/L NaCl, with which the germination rate of the bud was 93%. The optimal medium for fast plant growth was MS medium containing MES containing 0.4 mg/L zeatin (ZT), 1 mg/L putrescine, 1 mg/L spermidine, 1 mg/L spermidine, which had a good growth state and growth rate. The optimal cultivation for plantlet growth was MS medium containing MES containing 0.5 mg/L isopentene adenine, with which the plantlet was strong. The optimal rooting medium for the stem was 1/2MS medium containing 2.0 mg/L NAA, with which the rooting rate was 93% with a short time and more adventitious root. In conclusion, we found that stem explants had higher regeneration efficiency for a stable and efficient production system of industrialization of tissue culture. This study provides theoretical guidance and technical support in precision breeding and standardization and industrialization in the blueberry industry.
DNA methylation is a conserved epigenetic modification that is typically associated with silencing of transposable elements and promoter methylated genes. However, some DNA-methylated loci are protected from silencing, allowing transcriptional flexibility in response to environmental and developmental cues. Through a genetic screen in Arabidopsis (Arabidopsis thaliana), we uncovered an antagonistic relationship between the MICRORCHIDIA (MORC) protein and the IMITATION SWITCH (ISWI) complex in regulating the DNA-methylated SUPPRESSOR OF DRM1 DRM2 CMT3 (SDC) reporter. We demonstrate that components of the plant-specific ISWI complex, including CHROMATIN REMODELING PROTEIN11 (CHR11), CHR17, DDT-RELATED PROTEIN4 (DDR4), and DDR5, function to partially de-repress silenced genes and transposable elements (TEs), through their function in regulating nucleosome distribution. This action also requires the known transcriptional activator DNAJ proteins, providing a mechanistic link between nucleosome remodeling and transcriptional activation. Genome-wide studies revealed that DDR4 causes changes in nucleosome distribution at numerous loci, a subset of which is associated with changes in DNA methylation and/or transcription. Our work reveals a mechanism for balancing transcriptional flexibility and faithful silencing of DNA-methylated loci. As both ISWI and MORC family genes are widely distributed across plant and animal species, our findings may represent a conserved eukaryotic mechanism for fine-tuning gene expression under epigenetic regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.