In this paper, we propose a new direction of arrival (DOA) estimation algorithm, in which DOA estimation is achieved by finding the sparsest support set of multiple measurement vectors (MMV) in an over-complete dictionary. The proposed algorithm is based on ℓp norm minimization, which belongs to non-convex optimization. Therefore, the quasi-Newton method is used to converge the iterative process. There are two advantages of this algorithm: one is the higher possibility and resolution of distinguishing closely spaced sources, and the other is the adaptive regularization parameter adjustment. Moreover, an accelerating strategy is applied in the computation, and a weighted method of the proposed algorithm is also introduced to improve the accuracy. We conducted experiments to validate the effectiveness of the proposed algorithm. The performance was compared with several popular DOA estimation algorithms and the Cramer–Rao bound (CRB).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.