Purpose
With the rapid advancement of computer information technology, the traditional clothing industry has stridden towards automation and digitization that drive the growth of electronic commerce and line retailing. The purpose of this paper is to propose an approach on 3D upper body modelling based on the body measurements extracted by non-contact anthropometry.
Design/methodology/approach
Based on the frontal and side images of the human body, the body sizes were extracted through silhouette extraction, identification of landmarks and girth prediction. The generation rules of 15 characteristic cross-sectional curves were established using a method “feature points – inserted points – feature curves – basic surface – mannequin”. The feature points of each position were determined at each curve, such as the side neck point, front neck point, shoulder point, bust point, and bust root point and so on to get the cross-sections, and then some feature points were inserted at the curves according to the widths and depths to establish the calculative models. For example, there are 18 points distributed at the bust cross-sectional curve to determine the shape.
Findings
The final mannequin could describe the basic characteristics of a human body, and the shape of the feature curves could also fit the body type to provide basis for the future research on automatic pattern generation.
Originality/value
This study can realize the 3D virtual modelling of female upper body and the automatic generation of the individualized apparel patterns based on the frontal and side images.
Female breasts are regarded as a factor reflecting women’s morphological beauty. An appropriate bra can fulfill aesthetic needs, thus boosting self-esteem. This study proposed a method to analyze young women’s breast-bra morphological variations between two identical bras with different bra cup thicknesses. The 3D surface scan data of 129 female students who were braless and wore a thin bra (13 mm) and a thick bra (23 mm) were analyzed. Integral sections of the breasts and bra were cut at a fixed thickness of 10 mm, and slice maps were derived. Morphological parameters were extracted in braless and the two bra conditions. The variations in breast-bra shape caused by different thicknesses of bra cups were evaluated by quantifying breast ptosis, gathering, and breast slice area. The results showed that the thin bra lifted the breasts by 2.16 cm, whereas the thick bra decreased breast separation, gathering the breasts and moving them 2.15 cm laterally towards the center of the chest wall. Moreover, prediction models constructed using the critical morphological parameters were used to characterize breast-bra shape after wearing the provided bras. The findings lay the groundwork for quantifying the breast-bra shape variation caused by different bra cup thicknesses, allowing young females to choose optimally fitting bras to achieve their desired breast aesthetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.