Tunneling nanotubes (TNTs) are nanoscale, actin-rich, transient intercellular tubes for cell-to-cell communication, which transport various cargoes between distant cells. The structural complexity and spatial organization of the involved components of...
Thermodynamic behavior has been extensively used to evaluate the stability of materials and predict the direction of the chemical reaction at different pH values, temperatures, potentials, and ion concentrations. Although researching efforts on Sn species in an aqueous solution system (Sn/H2O) of acid, alkali, and salt have been reported, scattered data leads to the inefficiency of a thermodynamic method in the practical application. This article provides a brief review on the potential-pH diagram for Sn/H2O system, which reflects the thermodynamic behavior of Sn species in an aqueous solution and extracts thermodynamic data for the practical application of Sn species. Firstly, the relationship of the thermodynamic behavior, potential-pH diagram, and equilibrium relations of Sn species for Sn/H2O system was overviewed. Additionally, the potential-pH diagram of Sn/H2O system at different temperatures (298 K, 373 K, and 550 K), dissolved Sn activities (1, 10?1, 10?3, and 10?6), and the potential-pH diagram of the Sn species in achloridion aqueous solution (Sn/H2O-Cl)was summarized. Finally, the application prospect of the potential-pH diagram for Sn/H2O system is prospected in the intelligent simulation of Sn metallurgy and the practical application of Sn materials.
Single molecule localization microscopy (SMLM) detects and locates sparsely luminous single fluorescent molecules to achieve super-resolution imaging at nanoscale spatial resolution. In order to improve the temporal resolution, it is necessary to increase the density of the simultaneously emitting molecules. However, with the increase of the density, the point spread function (PSF) of different molecules will overlap severely on the detector, resulting in reduced spatial resolution, especially for three-dimensional (3D) SMLM. To solve this problem, a high density 3D-SMLM imaging method based on orthogonal astigmatism is proposed. Analysis and numerical simulation study for the method are carried out and presented. The main idea of the proposed orthogonal astigmatic method is to split the collected fluorescence in a SMLM microscope into two beams, each of which paths through a separate channel with a cylindrical lens and arrives at a specific region on the same detector. The two cylindrical lenses have the same optical parameters, but their orientations are set to be orthogonal to each other. They are used to obtain both positive and negative astigmatic PSF images of the same fluorescent molecule. Then, a linear projection model of the imaging process is established, and the 3D localization of the fluorescent molecules is realized using a compression sensing algorithm. The results show that, the two orthogonal cylindrical lenses produce a pair of astigmatic PSFs for one single molecule so that different PSF pairs between different molecules have lower mutual correlation, and thus the 3D localization accuracy for high density imaging can be significantly improved compared to traditional astigmatic method using one single cylindrical lens, and the larger the defocusing degree, the greater the shape difference between the two astigmatic PSFs, the more obvious this advantage is.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.