Hypothesis tests are a crucial statistical tool for data mining and are the workhorse of scientific research in many fields. Here we study differentially private tests of independence between a categorical and a continuous variable. We take as our starting point traditional nonparametric tests, which require no distributional assumption (e.g., normality) about the data distribution. We present private analogues of the Kruskal-Wallis, Mann-Whitney, and Wilcoxon signed-rank tests, as well as the parametric one-sample t-test. These tests use novel test statistics developed specifically for the private setting. We compare our tests to prior work, both on parametric and nonparametric tests. We find that in all cases our new nonparametric tests achieve large improvements in statistical power, even when the assumptions of parametric tests are met.
Hypothesis tests are a crucial statistical tool for data mining and are the workhorse of scientific research in many fields. Here we present a differentially private analogue of the classic Wilcoxon signed-rank hypothesis test, which is used when comparing sets of paired (e.g., before-and-after) data values. We present not only a private estimate of the test statistic, but a method to accurately compute a p-value and assess statistical significance. We evaluate our test on both simulated and real data. Compared to the only existing private test for this situation, that of Task and Clifton, we find that our test requires less than half as much data to achieve the same statistical power.
We propose Bayesian methods to assess the statistical disclosure risk of data released under zero-concentrated differential privacy, focusing on settings with a strong hierarchical structure and categorical variables with many levels. Risk assessment is performed by hypothesizing Bayesian intruders with various amounts of prior information and examining the distance between their posteriors and priors. We discuss applications of these risk assessment methods to differentially private data releases from the 2020 decennial census and perform simulation studies using public individual-level data from the 1940 decennial census. Among these studies, we examine how the data holder's choice of privacy parameter affects the disclosure risk and quantify the increase in risk when a hypothetical intruder incorporates substantial amounts of hierarchical information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.