PM2.5 has an impact on residents' physical health during travelling, especially walking completely exposed to the environment. In order to obtain the specific impact of PM2.5 on walking, 368 healthy volunteers were selected and they were grouped according to gender and age. In the experiment, the heart rate change rate (HR%) is taken as test variable. According to receiver operating characteristic (ROC) curve, the travel is divided into two states: safety and risk. Based on this, a binary logit model considering Body Mass Index (BMI) is established to determine the contribution of PM2.5 concentration and body characteristics to travel risk. The experiment was conducted on Chang'an Middle Road in Xi'an City. The analysis results show that the threshold of HR% for safety and risk ranges from 31.1 to 40.1%, and that of PM2.5 concentration ranges from 81 to 168 μg/m3. The probability of risk rises 5.8% and 11.4%, respectively, for every unit increase in PM2.5 concentration and HR%. Under same conditions, the probability of risk for male is 76.8% of that for female. The probability of risk for youth is 67.5% of that for middle-aged people, and the probability of risk for people with BMI in healthy range is 72.1% of that for non-healthy range. The research evaluates risk characteristics of walking in particular polluted weather, which can improve residents’ health level and provide suggestions for travel decision while walking.
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been basically under control in China since March 2020, but the import of domestic SARS-CoV-2 has begun to increase. This study reported the first case of asymptomatic SARS-CoV-2 infection imported from Spain into Sichuan Province, China, on March 11, 2020. The infected male had a body temperature of 37.5°C, normal blood oxygen saturation levels, and a computed tomography (CT) examination showed that his lungs had no shadows. However, a throat swab from the subject tested positive for SARS-CoV-2 using qPCR assay. In this study, we conducted transcriptome sequencing on respiratory throat swabs from the subject and found that the dominant SARS-CoV-2 sequence (Gene Bank ID: MW301121) was a spike protein D614G mutant strain, which is currently popular throughout world. We downloaded and analyzed SARS-CoV-2 sequences collected from cases in China and Spain for comparison and tracing purposes. After March 11, 2020, the Chinese domestic clade was naturally divided into the imported SARS-CoV-2 D614G mutant strain and evolutionarily-related similar sequences and that of sequences collected in the original Wuhan area. The sequence reported in this study was located on a small branch, far from the evolution of Wuhan sequences. As expected, the identified sequence was closely related to the evolution of the SARS-CoV-2 D614G mutant strain circulating in Spain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.