Since the COVID-19 outbreak, four cities—Wuhan, Beijing, Urumqi and Dalian—have experienced the process from outbreak to stabilization. According to the China Statistical Yearbook and China Center for Disease Control records, regional, pathological, medical and response attributes were selected as regional vulnerability factors of infectious diseases. Then the Analytic Hierarchy Process (AHP) method was used to build a regional vulnerability index model for the infectious disease. The influence of the COVID-19 outbreak at a certain place was assessed computationally in terms of the number of days of epidemic duration and cumulative number of infections, and then fitted to the city data. The resulting correlation coefficient was 0.999952. The range of the regional vulnerability index for COVID-19 virus was from 0.0513 to 0.9379. The vulnerability indexes of Wuhan, Urumqi, Beijing and Dalian were 0.8733, 0.1951, 0.1566 and 0.1119, respectively. The lack of understanding of the virus became the biggest breakthrough point for the rapid spread of the virus in Wuhan. Due to inadequate prevention and control measures, the city of Urumqi was unable to trace the source of infection and close contacts, resulting in a relatively large impact. Beijing has both high population density and migration rate, which imply that the disease outbreak in this city had a great impact. Dalian has perfect prevention and good regional attributes. In addition, the regional vulnerability index model was used to analyze other Chinese cities. Accordingly, the regional vulnerability index and the prevention and control suggestions for them were discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s40808-021-01244-y.
Carbon dioxide (CO2) is one of the main greenhouse gases leading to global warming, and the ocean is the largest carbon reservoir on the earth that plays an important role in regulating CO2 concentration on a global scale. The column-averaged dry-air mole fraction of atmospheric CO2 (XCO2) is a key parameter in describing ocean carbon content. In this paper, the Data Interpolation Empirical Orthogonal Function (DINEOF) and the Bayesian Maximum Entropy (BME) methods are combined to interpolate XCO2 data of Orbiting Carbon Observatory 2 (OCO-2) and Orbiting Carbon Observatory 3 (OCO-3) from January to December 2020 occurring within the geographical range of 15–45°N and 120–150°E. At the first stage of our proposed analysis, spatiotemporal information was used by the DINEOF method to perform XCO2 interpolation that improved data coverage; at the second stage, the DINEOF-generated interpolation results were regarded as soft data and were subsequently assimilated using the BME method to obtain improved XCO2 interpolation values. The performance of the synthetic DINEOF–BME interpolation method was evaluated by means of a five-fold cross-validation method. The results showed that the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE), and the Bias of the DINEOF-based OCO-2 and OCO-3 interpolations were 2.106 ppm, 3.046 ppm, and 1.035 ppm, respectively. On the other hand, the MAE, RMSE, and Bias of the cross-validation results obtained by the DINEOF–BME were 1.285 ppm, 2.422 ppm, and −0.085 ppm, respectively, i.e., smaller than the results obtained by DINEOF. In addition, based on the in situ measured XCO2 data provided by the Total Carbon Column Observing Network (TCCON), the original OCO-2 and OCO-3 data were combined and compared with the interpolated products of the synthetic DINEOF–BME framework. The accuracy of the original OCO-2 and OCO-3 products is lower than the DINEOF–BME-generated XCO2 products in terms of MAE (1.751 ppm vs. 2.616 ppm), RMSE (2.877 ppm vs. 3.566 ppm) and Bias (1.379 ppm vs 1.622 ppm), the spatiotemporal coverage of XCO2 product also improved dramatically from 16% to 100%. Lastly, this study demonstrated the feasibility of the synthetic DINEOF–BME approach for XCO2 interpolation purposes and the ability of the BME method to be successfully combined with other techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.