Visible Light Positioning (VLP) is widely recognized as a cost-effective solution for indoor positioning with increasing demand. However, the nonlinearity and highly complex relationship between three-dimensional world coordinate and two-dimensional image coordinate hinders the good performance of image-sensor-based VLP. Therefore, there is a need to develop effective VLP algorithms to locate the positioning terminal using image sensor. Besides, due to the high computational cost of image processing, most existing VLP systems do not achieve satisfactory performance in terms of real-time ability and positioning accuracy, both of which are significant for the performance of indoor positioning system. In addition, the accurate identification of the ID information of each LED (LED-ID) is important for positioning, because if the LED-ID is not recognized well, the positioning can only be achieved in a particular positioning unit and cannot be applied to a large scene with many LEDs. Therefore, an effective image-sensor-based double-light positioning system is proposed in this paper to solve the above problems. We also set up relevant experiments to test the performance of the proposed system, which utilizes the rolling shutter mechanism of the Complementary Metal Oxide Semiconductor (CMOS) image sensor. Machine learning was used to identify the LED-ID for better results. Simulation results show that the proposed double-light positioning system could deliver satisfactory performance in terms of both the real-time ability and the accuracy of positioning. Moreover, the proposed double-light positioning algorithm has low complexity and takes the symmetry problem of angle into consideration, which has never been considered before. Experiments confirmed that the proposed double-light positioning system can provide an accuracy of 3.85 cm with an average computing time of 56.28 ms, making it a promising candidate for future indoor positioning applications.
Visible light positioning (VLP) is a promising technology for indoor navigation. However, most studies of VLP systems nowadays only focus on positioning accuracy, whereas robustness and real-time ability are often overlooked, which are all indispensable in actual VLP situations. Thus, we propose a novel VLP method based on mean shift (MS) algorithm and unscented Kalman filter (UKF) using image sensors as the positioning terminal and a Light Emitting Diode (LED) as the transmitting terminal. The main part of our VLP method is the MS algorithm, realizing high positioning accuracy with good robustness. Besides, UKF equips the mean shift algorithm with the capacity to track high-speed targets and improves the positioning accuracy when the LED is shielded. Moreover, a LED-ID (the identification of the LED) recognition algorithm proposed in our previous work was utilized to locate the LED in the initial frame, which also initialized MS and UKF. Furthermore, experiments showed that the positioning accuracy of our VLP algorithm was 0.42 cm, and the average processing time per frame was 24.93 ms. Also, even when half of the LED was shielded, the accuracy was maintained at 1.41 cm. All these data demonstrate that our proposed algorithm has excellent accuracy, strong robustness, and good real-time ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.