Objective
To evaluate the Edinburgh Postnatal Depression Scale (EPDS) for screening to detect major depression in pregnant and postpartum women.
Design
Individual participant data meta-analysis.
Data sources
Medline, Medline In-Process and Other Non-Indexed Citations, PsycINFO, and Web of Science (from inception to 3 October 2018).
Eligibility criteria for selecting studies
Eligible datasets included EPDS scores and major depression classification based on validated diagnostic interviews. Bivariate random effects meta-analysis was used to estimate EPDS sensitivity and specificity compared with semi-structured, fully structured (Mini International Neuropsychiatric Interview (MINI) excluded), and MINI diagnostic interviews separately using individual participant data. One stage meta-regression was used to examine accuracy by reference standard categories and participant characteristics.
Results
Individual participant data were obtained from 58 of 83 eligible studies (70%; 15 557 of 22 788 eligible participants (68%), 2069 with major depression). Combined sensitivity and specificity was maximised at a cut-off value of 11 or higher across reference standards. Among studies with a semi-structured interview (36 studies, 9066 participants, 1330 with major depression), sensitivity and specificity were 0.85 (95% confidence interval 0.79 to 0.90) and 0.84 (0.79 to 0.88) for a cut-off value of 10 or higher, 0.81 (0.75 to 0.87) and 0.88 (0.85 to 0.91) for a cut-off value of 11 or higher, and 0.66 (0.58 to 0.74) and 0.95 (0.92 to 0.96) for a cut-off value of 13 or higher, respectively. Accuracy was similar across reference standards and subgroups, including for pregnant and postpartum women.
Conclusions
An EPDS cut-off value of 11 or higher maximised combined sensitivity and specificity; a cut-off value of 13 or higher was less sensitive but more specific. To identify pregnant and postpartum women with higher symptom levels, a cut-off of 13 or higher could be used. Lower cut-off values could be used if the intention is to avoid false negatives and identify most patients who meet diagnostic criteria.
Registration
PROSPERO (CRD42015024785).
for the Depression Screening Data (DEPRESSD) PHQ Collaboration IMPORTANCE The Patient Health Questionnaire depression module (PHQ-9) is a 9-item self-administered instrument used for detecting depression and assessing severity of depression. The Patient Health Questionnaire-2 (PHQ-2) consists of the first 2 items of the PHQ-9 (which assess the frequency of depressed mood and anhedonia) and can be used as a first step to identify patients for evaluation with the full PHQ-9.OBJECTIVE To estimate PHQ-2 accuracy alone and combined with the PHQ-9 for detecting major depression.
We systematically reviewed and analyzed the available data for galactomannan (GM), β-D-glucan (BG), and polymerase chain reaction (PCR)-based assays to detect invasive fungal disease (IFD) in patients with pediatric cancer or undergoing hematopoietic stem cell transplantation when used as screening tools during immunosuppression or as diagnostic tests in patients presenting with symptoms such as fever during neutropenia (FN). Of 1532 studies screened, 25 studies reported on GM (n = 19), BG (n = 3), and PCR (n = 11). All fungal biomarkers demonstrated highly variable sensitivity, specificity, and positive predictive values, and these were generally poor in both clinical settings. GM negative predictive values were high, ranging from 85% to 100% for screening and 70% to 100% in the diagnostic setting, but failure to identify non-Aspergillus molds limits its usefulness. Future work could focus on the usefulness of combinations of fungal biomarkers in pediatric cancer and HSCT.
If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.