Isotope Ratio Mass Spectrometry (IRMS) is a specialized technique used to provide information about the geographic, chemical, and biological origins of substances. The ability to determine the source of an organic substance stems from the relative isotopic abundances of the elements which comprise the material. Because the isotope ratios of elements such as carbon, hydrogen, oxygen, sulfur, and nitrogen can become locally enriched or depleted through a variety of kinetic and thermodynamic factors, measurement of the isotope ratios can be used to differentiate between samples which otherwise share identical chemical compositions. Several sample introduction methods are now available for commercial isotope ratio mass spectrometers. Combustion is most commonly used for bulk isotopic analysis, whereas gas and liquid chromatography are predominately used for the real-time isotopic analysis of specific compounds within a mixture. Here, highlights of advances in instrumentation and applications within the last three years are provided to illustrate the impact of this rapidly growing area of research. Some prominent new applications include authenticating organic food produce, ascertaining whether or not African elephants are guilty of night-time raids on farmers' crops, and linking forensic drug and soil samples from a crime scene to a suspected point of origin. For the sake of brevity, we focus this Minireview on the isotope ratio measurements of lighter-elements common to organic sources; we do not cover the equally important field of inorganic isotope ratio mass spectrometry.
In this study, δ¹³C values of six cocaine samples were identified and classified using a single quadrupole mass spectrometer and an isotope ratio mass spectrometry (IRMS) as simultaneous gas chromatography detectors. Our instrument modification is simple to use and is useful (i) when the sample is of limited size or can only be injected once, (ii) to help identify peaks in a complicated IRMS chromatogram, and (iii) to help differentiate very simple systems when impurity profiling is not possible. The EI-MS confirmed the identity of cocaine in each sample. The IRMS data distinguished 12 of the 15 possible pair-wise comparisons at the 95% CL. Three samples could not be differentiated by their δ¹³C ratios for cocaine. ANOVA demonstrated that the measurement variance was consistently larger than the sample variance. As the δ¹³C values clearly show, this technique enables the exclusion of a potential common source even when two samples have otherwise identical chemical and physical properties.
Five marijuana samples were compared using bulk isotope analysis compound-specific isotope ratio analysis of the extracted cannabinoids. Owing to the age of our cannabis samples, four of the five samples were compared using the isotope ratios of cannabinol (CBN), a stable degradation product of Δ(9)-tetrahydrocannabinol (THC). Bulk δ(13)C isotope analysis discriminated between all five samples at the 95% confidence level. Compound-specific δ(13)C isotope analysis could not distinguish between one pair of the five samples at the 95% confidence level. All the measured cannabinoids showed significant depletion in (13)C relative to bulk isotope values; the isotope ratios for THC, CBN, and cannabidiol were on average 1.6‰, 1.7‰, and 2.2‰ more negative than the bulk values, respectively. A more detailed investigation needs to be conducted to assess the degree fractionation between the different cannabinoids, especially after aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.