In recent years, with the increase of social investment in scientific research, the number of research results in various fields has increased significantly. Accurately and effectively predicting the trends of future research topics can help researchers discover future research hotspots.However, due to the increasingly close correlation between various research themes, there is a certain dependency relationship between a large number of research themes. Viewing a single research theme in isolation and using traditional sequence problem processing methods cannot effectively explore the spatial dependencies between these research themes. To simultaneously capture the spatial dependencies and temporal changes between research topics, we propose a deep neural network-based research topic hotness prediction algorithm, a spatiotemporal convolutional network model. Our model combines a graph convolutional neural network (GCN) and Temporal Convolutional Network (TCN), specifically, GCNs are used to learn the spatial dependencies of research topics a and use space dependence to strengthen spatial characteristics. TCN is used to learn the dynamics of research topics' trends. Optimization is based on the calculation of weighted losses based on time distance. Compared with the current mainstream sequence prediction models and similar spatiotemporal models on the paper datasets, experiments show that, in research topic prediction tasks, our model can effectively capture spatiotemporal relationships and the predictions outperform state-of-art baselines.
Computer science discipline includes many research fields, which mutually influence and promote each other’s development. This poses two great challenges of predicting the research topics of each research field. One is how to model fine-grained topic representation of a research field. The other is how to model research topic of different fields and keep the semantic consistency of research topics when learning the scientific influence context from other related fields. Unfortunately, the existing research topic prediction approaches cannot handle these two challenges. To solve these problems, we employ multiple different Recurrent Neural Network chains which model research topics of different fields and propose a research topic prediction model based on spatial attention and semantic consistency-based scientific influence modeling. Spatial attention is employed in field topic representation which can selectively extract the attributes from the field topics to distinguish the importance of field topic attributes. Semantic consistency-based scientific influence modeling maps research topics of different fields to a unified semantic space to obtain the scientific influence context of other related fields. Extensive experiment results on five related research fields in the computer science (CS) discipline show that the proposed model is superior to the most advanced methods and achieves good topic prediction performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.