Estimation of basic material consumption in civil engineering is very important in the initial phases of project implementation. Its importance is reflected in the impact of material quantities on forming the prices of individual positions, hence on forming the total cost of construction. The construction companies use the estimate of material quantity, among other things, as a base to make a bid on the market. The precision of the offer, taking into account the overall conditions of the business realization, directly influences the profit that the company can make on a specific project. In the early stages of project implementation, there are not enough available data, especially when it comes to the data needed to estimate material consumption, and therefore, the accuracy of material consumption estimation in the early stages of project realization is smaller. The paper presents the research on the use of artificial intelligence for the estimation of concrete and reinforcement consumption and the selection of optimal models for estimation. The estimation model was developed by using artificial neural networks. The best artificial neural network model showed high accuracy in material consumption estimation expressed as the mean absolute percentage error, 8.56% for concrete consumption estimate and 17.31% for reinforcement consumption estimate.
Deflections on continuous beams with glass fiber-reinforced polymer (GFRP) reinforcement are calculated in accordance with the appropriate standards (ACI 440.1R-15, CSA S806-12). However, experimental research provides results which differ from the values calculated pursuant to the standards, particularly when it comes to continuous beams. Machine learning methods can be applied for predicting a deflection level on continuous beams with GFRP (glass fiber-reinforced polymer) reinforcement and loaded with a concentrated load. This paper presents research on using artificial neural networks for deflection estimation and an optimal prediction model choice. It was necessary to first develop a database, in order to train the neural network. The database was formed based on the results of the experimental research on continuous beams with GFRP reinforcement. Using the best trained neural network model, high accuracy was obtained in estimating deflection, expressed over the mean absolute percentage error, 9.0%. This result indicates a high level of reliability in the prediction of deflection with the help of artificial neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.