Drug resistance of Pseudomonas aeruginosa is a leading problem in hospital infections. The aim of this study was to determine the best molecular genetic discrimination method for Pseudomonas spp. isolates among 94 outpatients and inpatients and see their grouping by phenotype characteristics (biofilm formation, frequency of serotypes, pigmentation, production of different class of beta-lactamases, and susceptibility to different antibiotic classes) and genotype. The most common serotypes were P1, P6, and P11, while co-productions of pyoverdine and pyocyanin were observed in 70 % of isolates. A total of 77.66 % isolates were mostly weak and moderate biofilm producers. Isolates were susceptible to colistin (100 %), aztreonam (97.87 %), imipenem (91.49 %), doripenem (90.43 %), and meropenem (84.04 %). MICs values confirmed susceptibility to ceftazidime and cefepime and singled out meripenem as the most effective inhibitor. Most isolates were resistant to aminoglycosides and fluoroquinolones. Only two isolates produced ESBL, eight were carbapenemase producers, and five isolates produced MBLs. Twenty-nine isolates were multidrug-resistant; 82.8 % of which produced both pigments, 58.3 % were non-typeable, while the P6 and P11 serotypes were equally distributed (16.7 %). Thirteen MDR isolates were strong enzyme producers. RAPD PCR analysis using primer 272 proved the best at discriminatory fingerprinting for Pseudomonas isolates, as it allocated 12 clusters. A correlation between DNA patterns and antibiotic resistance, production of pigments, serotypes distribution, and biofilm formation was not observed, and only confirmed higher genetic heterogeneity among P. aeruginosa isolates, which suggests that other molecular methods are needed to reveal potential relations between genotypic patterns and phenotypic characteristics.
We examined the effect of drought-tolerant Bacillus safensis SS-2.7 and B. thuringiensis SS-29.2 strains on the response of four (133, 274, California Wonder—CalW, and Matica) sweet pepper genotypes to water deficiency conditions. Pepper seeds were sown in pots with (treated) and without (control) bacterial strain inoculation. After four weeks of growth under controlled conditions and regular watering, drought was imposed by completely withholding watering for seven days. Under conditions of normal watering, genotype 274 showed better seedling establishment than genotype 133 and CalW, while the slowest was genotype Matica. Antioxidant enzyme activity under drought conditions was genotype and bacterial treatment-dependent. The best response to bacterial treatment in order to cope with severe drought was found in the CalW genotype, while in genotype 133, we determined even faster plant decay during water deficiency in treated seeds. Inoculated seeds of the Matica genotype did not show different antioxidant enzyme activity under normal and drought conditions. According to the obtained results, we concluded that under drought conditions, the most susceptible was genotype 274, moderate susceptibility was detected in genotype 133, and CalW and Matica were the most tolerant genotypes. Our study demonstrates (1) that drought-tolerant Bacillus strains showed a plant growth-promoting effect on some selected pepper genotypes; (2) that there were genotype-dependent antioxidant enzyme activities under drought conditions in response to treatment with a particular bacterial strain; and (3) that we could expect a genotype-dependent response during biostimulant application, especially under stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.