A novel method is presented for direct coupling of high-performance thin-layer chromatography (HPTLC) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the analysis of biomolecules. A first key feature is the use of a liquid matrix (glycerol), which provides a homogeneous wetting of the silica gel and a simple and fast MALDI preparation protocol. A second is the use of an Er:YAG infrared laser, which ablates layers of approximately 10-microm thickness of analyte-loaded silica gel and provides a soft desorption/ionization of even very labile analyte molecules. The orthogonal time-of-flight mass spectrometer employed in this study, finally provides a high accuracy of the mass determination, which is independent of any irregularity of the silica gel surface. The analytical potential of the method is demonstrated by the compositional mapping of a native GM3 (II(3)-alpha-Neu5Ac-LacCer) ganglioside mixture from cultured Chinese hamster ovary cells. The analysis is characterized by a high relative sensitivity, allowing the simultaneous detection of various major and minor GM3 species directly from individual HPTLC analyte bands. The lateral resolution of the direct HPTLC-MALDI-MS analysis is defined by the laser focus diameter of currently approximately 200 microm. This allows one to determine mobility profiles of individual species with a higher resolution than by reading off the chromatogram by optical absorption. The fluorescent dye primuline was, furthermore, successfully tested as a nondestructive, MALDI-compatible staining agent.
Gangliosides (GGs), involved in malignant alteration and tumor progression/invasiveness, are considered as tumor biomarkers or therapeutic targets. Here, we describe the first systematic GG composition characterization in human gliosarcoma versus normal brain tissue using our recently developed mass spectrometry (MS) methods, based on nano-electrospray (nano-ESI), Fourier-transform ion cyclotron resonance (FT-ICR), and chip nano-ESI quadrupole time-of-flight (QTOF), complemented by thin-layer chromatographic (TLC) analysis and quantification. Combined MS enabled detection and structural assignment of 73 distinct GG species: many more than reported so far for investigated gliomas. Apart from the 7.4-times lower total GG content, gliosarcoma contained all major brain-associated species, however, in very altered proportions, exhibiting a highly distinctive pattern: GD3 (48.9%)>GD1a/nLD1>GD2/GT3>GM3>GT1b>GM2>GM1a/GM1b/nLM1>LM1>GD1b>GQ1b. MS also revealed abundant O-Ac-GD3; its sequencing provided structural evidence to postulate a novel O-Ac-GD3 isomer O-acetylated at the inner Neu5Ac-residue, previously not structurally confirmed. The high sensitivity and mass accuracy permitted the assignment of unusual minor species: GM4, Hex-HexNAc-nLM1, Gal-GD1, Fuc-GT1, GalNAc-GT1, O-Ac-GM3, di- O-Ac-GD3O-Ac-GD3, and O-Ac-GT3, not previously reported as glioma-associated. The gliosarcoma-expressed GA2 might represent a marker distinguishing astrocytic from oligodendroglial tumors. This is, to our knowledge, so far the most complete GG composition characterization of certain glioma, which demonstrates that our MS-based approach could provide essential structural information relevant to glycosphingolipid role(s) in brain tumor biology, differential diagnosis/prognosis and novel treatment concepts.
The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series.
The introduction of chip-based electrospray (ESI) ion sources into biological mass spectrometry (MS) addressed the fundamental issue of how to analyze minute amounts of complex biological systems. The automation of sample delivery into the MS combined with the chip-based ESI allows for high quality bioanalysis in a high-throughput fashion. These advantages have already been demonstrated in proteomics, direct screening of drugs and drug discovery. As part of our continuing effort to implement automated chip-based mass spectrometry into the field of complex carbohydrate analysis, we hereby report the development of a chipESI MS and MS/MS methodology for the screening of gangliosides. A strategy to characterize a complex ganglioside mixture from human cerebellar tissue, by automated ESIchip-quadrupole time-of-flight (QTOF) MS and MS/MS is presented here. The feasibility of this method, and the general experimental requirements for automated chipESI MS analysis of these carbohydrate species is
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.