In this Article we present enthalpies of fusion and melting points obtained from new thermochemical measurements of tris(acetylacetonato)metal(III), M(acac)(3), complexes (M = Fe, Al, Cr, Mn, Co) using differential scanning calorimetry (DSC) and evaluate them in relation to their different values found in the literature. An enthalpy of fusion of 27.67 kJ mol(-)(1) was derived for Mn(acac)(3) from a symmetrical DSC thermogram captured for the first time. The enthalpy value was indirectly confirmed with the solubility measurements of Mn(acac)(3) in acetylacetone. A hypothesis has been stated that the enthalpy of fusion and the potential energy of M(acac)(3) in the crystal state may be related. To calculate molecular in-crystal potential energy, in this Article we proposed a molecular mechanics model for the M(acac)(3) class of compounds. Nine X-ray crystal structures of M(acac)(3) complexes (M = Fe, Al, V, Mn, Co, Cr, Sc) were included in the modeling. The conformational potential energy was minimized for a molecule surrounded by other molecules in the crystal lattice. The partial charges from two schemes, the electrostatic potential (ESP) fit and the natural population analysis (NPA), were used to construct two types of force fields to examine which force field type would yield a better fit with the experimental thermal properties. The final force fields were named FF-ESP and FF-NPA. Both force field sets reproduced well the experimental crystal data of nine M(acac)(3) complexes as well as of tris(3-methyl-2,4-pentanedionato-O,O')cobalt(III). Only in-crystal potential energies derived by FF-NPA yielded a significant correlation (correlation coefficient R = -0.71) with the measured enthalpies of fusion. The enthalpy of fusion for Co(acac)(3) could not be determined experimentally because of simultaneous decomposition and fusion, and it is predicted to be 33.2 kJ mol(-)(1) from the correlation regression line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.