Precise growing stock volume (GSV) estimation is essential for monitoring forest carbon dynamics, determining forest productivity, assessing ecosystem forest services, and evaluating forest quality. We evaluated four machine learning methods: classification and regression trees (CART), support vector machines (SVM), artificial neural networks (ANN), and random forests (RF), for their reliability in the estimation of the GSV of Pinus massoniana plantations in China’s northern subtropical regions, using remote sensing data. For all four methods, models were generated using data derived from a SPOT6 image, namely the spectral vegetation indices (SVIs), texture parameters, or both. In addition, the effects of varying the size of the moving window on estimation precision were investigated. RF almost always yielded the greatest precision independently of the choice of input. ANN had the best performance when SVIs were used alone to estimate GSV. When using texture indices alone with window sizes of 3 × 5 × 5 or 9 × 9, RF achieved the best results. For CART, SVM, and RF, R2 decreased as the moving window size increased: the highest R2 values were achieved with 3 × 3 or 5 × 5 windows. When using textural parameters together with SVIs as the model input, RF achieved the highest precision, followed by SVM and CART. Models using both SVI and textural parameters as inputs had better estimating precision than those using spectral data alone but did not appreciably outperform those using textural parameters alone.
Land cover is an important variable of the terrestrial ecosystem that provides information for natural resources management, urban sprawl detection, and environment research. To classify land cover with high-spatial-resolution multispectral remote sensing imagery is a difficult problem due to heterogeneous spectral values of the same object on the ground. Fully convolutional networks (FCNs) are a state-of-the-art method that has been increasingly used in image segmentation and classification. However, a systematic quantitative comparison of FCNs on high-spatial-multispectral remote imagery was not yet performed. In this paper, we adopted the three FCNs (FCN-8s, Segnet, and Unet) for Gaofen-2 (GF2) satellite imagery classification. Two scenes of GF2 with a total of 3329 polygon samples were used in the study area and a systematic quantitative comparison of FCNs was conducted with red, green, blue (RGB) and RGB+near infrared (NIR) inputs for GF2 satellite imagery. The results showed that: (1) The FCN methods perform well in land cover classification with GF2 imagery, and yet, different FCNs architectures exhibited different results in mapping accuracy. The FCN-8s model performed best among the Segnet and Unet architectures due to the multiscale feature channels in the upsampling stage. Averaged across the models, the overall accuracy (OA) and Kappa coefficient (Kappa) were 5% and 0.06 higher, respectively, in FCN-8s when compared with the other two models. (2) High-spatial-resolution remote sensing imagery with RGB+NIR bands performed better than RGB input at mapping land cover, and yet the advantage was limited; the OA and Kappa only increased an average of 0.4% and 0.01 in the RGB+NIR bands. (3) The GF2 imagery provided an encouraging result in estimating land cover based on the FCN-8s method, which can be exploited for large-scale land cover mapping in the future.
Pine wood nematode (PWN), Bursaphelenchus xyophilus, originating from North America, has caused great ecological and economic hazards to pine trees worldwide, especially affecting the coniferous forests and mixed forests of masson pine in subtropical regions of China. In order to prevent PWN disease expansion, the risk level and susceptivity of PWN outbreaks need to be predicted in advance. For this purpose, we established a prediction model to estimate the susceptibility and risk level of PWN with vegetation condition variables, anthropogenic activity variables, and topographic feature variables across a large-scale district. The study was conducted in Dangyang City, Hubei Province in China, which was located in a subtropical zone. Based on the location of PWN points derived from airborne imagery and ground survey in 2018, the predictor variables were conducted with remote sensing and geographical information system (GIS) data, which contained vegetation indices including normalized difference vegetation index (NDVI), normalized difference moisture index (NDMI), normalized burn ratio (NBR), and normalized red edge index (NDRE) from Sentinel-2 imagery in the previous year (2107), the distance to different level roads which indicated anthropogenic activity, topographic variables in including elevation, slope, and aspect. We compared the fitting effects of different machine learning algorithms such as random forest (RF), K-neighborhood (KNN), support vector machines (SVM), and artificial neural networks (ANN) and predicted the probability of the presence of PWN disease in the region. In addition, we classified PWN points to different risk levels based on the density distribution of PWN sites and built a PWN risk level model to predict the risk levels of PWN outbreaks in the region. The results showed that: (1) the best model for the predictive probability of PWN presence is the RF classification algorithm. For the presence prediction of the dead trees caused by PWN, the detection rate (DR) was 96.42%, the false alarm rate (FAR) was 27.65%, the false detection rate (FDR) was 4.16%, and the area under the receiver operating characteristic curve (AUC) was equal to 0.96; (2) anthropogenic activity variables had the greatest effect on PWN occurrence, while the effects of slope and aspect were relatively weak, and the maximum, minimum, and median values of remote sensing indices were more correlated with PWN occurrence; (3) modeling analysis of different risk levels of PWN outbreak indicated that high-risk level areas were the easiest to monitor and identify, while lower incidence areas were identified with relatively low accuracy. The overall accuracy of the risk level of the PWN outbreak was identified with an AUC value of 0.94. From the research findings, remote sensing data combined with GIS data can accurately predict the probability distribution of the occurrence of PWN disease. The accuracy of identification of high-risk areas is higher than other risk levels, and the results of the study may improve control of PWN disease spread.
Advanced techniques capable of early, rapid, and nondestructive detection of the impacts of drought on fruit tree and the measurement of the underlying photosynthetic traits on a large scale are necessary to meet the challenges of precision farming and full prediction of yield increases. We tested the application of hyperspectral reflectance as a high-throughput phenotyping approach for early identification of water stress and rapid assessment of leaf photosynthetic traits in citrus trees by conducting a greenhouse experiment. To this end, photosynthetic CO2 assimilation rate (Pn), stomatal conductance (Cond) and transpiration rate (Trmmol) were measured with gas-exchange approaches alongside measurements of leaf hyperspectral reflectance from citrus grown across a gradient of soil drought levels six times, during 20 days of stress induction and 13 days of rewatering. Water stress caused Pn, Cond, and Trmmol rapid and continuous decline throughout the entire drought period. The upper layer was more sensitive to drought than middle and lower layers. Water stress could also bring continuous and dynamic changes of the mean spectral reflectance and absorptance over time. After trees were rewatered, these differences were not obvious. The original reflectance spectra of the four water stresses were surprisingly of low diversity and could not track drought responses, whereas specific hyperspectral spectral vegetation indices (SVIs) and absorption features or wavelength position variables presented great potential. The following machine-learning algorithms: random forest (RF), support vector machine (SVM), gradient boost (GDboost), and adaptive boosting (Adaboost) were used to develop a measure of photosynthesis from leaf reflectance spectra. The performance of four machine-learning algorithms were assessed, and RF algorithm yielded the highest predictive power for predicting photosynthetic parameters (R2 was 0.92, 0.89, and 0.88 for Pn, Cond, and Trmmol, respectively). Our results indicated that leaf hyperspectral reflectance is a reliable and stable method for monitoring water stress and yield increase, with great potential to be applied in large-scale orchards.
The continuous and extensive pinewood nematode disease has seriously threatened the sustainable development of forestry in China. At present, many studies have used high-resolution remote sensing images combined with a deep semantic segmentation algorithm to identify standing dead trees in the red attack period. However, due to the complex background, closely distributed detection scenes, and unbalanced training samples, it is difficult to detect standing dead trees (SDTs) in a variety of complex scenes by using conventional segmentation models. In order to further solve the above problems and improve the recognition accuracy, we proposed a new detection method called multi-scale spatial supervision convolutional network (MSSCN) to identify SDTs in a wide range of complex scenes based on airborne remote sensing imagery. In the method, a Gaussian kernel approach was used to generate a confidence map from SDTs marked as points for training samples, and a multi-scale spatial attention block was added into fully convolutional neural networks to reduce the loss of spatial information. Further, an augmentation strategy called copy–pasting was used to overcome the lack of efficient samples in this research area. Validation at four different forest areas belonging to two forest types and two diseased outbreak intensities showed that (1) the copy–pasting method helps to augment training samples and can improve the detecting accuracy with a suitable oversampling rate, and the best oversampling rate should be carefully determined by the input training samples and image data. (2) Based on the two-dimensional spatial Gaussian kernel distribution function and the multi-scale spatial attention structure, the MSSCN model can effectively find the dead tree extent in a confidence map, and by following this with maximum location searching we can easily locate the individual dead trees. The averaged precision, recall, and F1-score across different forest types and disease-outbreak-intensity areas can achieve 0.94, 0.84, and 0.89, respectively, which is the best performance among FCN8s and U-Net. (3) In terms of forest type and outbreak intensity, the MSSCN performs best in pure pine forest type and low-outbreak-intensity areas. Compared with FCN8s and U-Net, the MSSCN can achieve the best recall accuracy in all forest types and outbreak-intensity areas. Meanwhile, the precision metric is also maintained at a high level, which means that the proposed method provides a trade-off between the precision and recall in detection accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.