Phage therapy is the application of bacteria-specific viruses with the goal of reducing or eliminating pathogenic or nuisance bacteria. While phage therapy has become a broadly relevant technology, including veterinary, agricultural, and food microbiology applications, it is for the treatment or prevention of human infections that phage therapy first caught the world's imagination--see, especially, Arrowsmith by Sinclair Lewis (1925)--and which today is the primary motivator of the field. Nonetheless, though the first human phage therapy took place in the 1920s, by the 1940s the field, was in steep decline despite early promise. The causes were at least three-fold: insufficient understanding among researchers of basic phage biology; over exuberance, which led, along with ignorance, to carelessness; and the advent of antibiotics, an easier to handle as well as highly powerful category of antibacterials. The decline in phage therapy was neither uniform nor complete, especially in the former Soviet Republic of Georgia, where phage therapy traditions and practice continue to this day. In this review we strive toward three goals: 1. To provide an overview of the potential of phage therapy as a means of treating or preventing human diseases; 2. To explore the phage therapy state of the art as currently practiced by physicians in various pockets of phage therapy activity around the world, including in terms of potential commercialization; and 3. To avert a recapitulation of phage therapy's early decline by outlining good practices in phage therapy practice, experimentation, and, ultimately, commercialization.
The preparation and distribution of fresh-cut produce is a rapidly developing industry that provides the consumer with convenient and nutritious food. However, fresh-cut fruits and vegetables may represent an increased food safety concern because of the absence or damage of peel and rind, which normally help reduce colonization of uncut produce with pathogenic bacteria. In this study, we found that Salmonella Enteritidis populations can (i) survive on fresh-cut melons and apples stored at 5 degrees C, (ii) increase up to 2 log units on fresh-cut fruits stored at 10 degrees C, and (iii) increase up to 5 log units at 20 degrees C during a storage period of 168 h. In addition, we examined the effect of lytic, Salmonella-specific phages on reducing Salmonella numbers in experimentally contaminated fresh-cut melons and apples stored at various temperatures. We found that the phage mixture reduced Salmonella populations by approximately 3.5 logs on honeydew melon slices stored at 5 and 10 degrees C and by approximately 2.5 logs on slices stored at 20 degrees C, which is greater than the maximal amount achieved using chemical sanitizers. However, the phages did not significantly reduce Salmonella populations on the apple slices at any of the three temperatures. The titer of the phage preparation remained relatively stable on melon slices, whereas on apple slices the titer decreased to nondetectable levels in 48 h at all temperatures tested. Inactivation of phages, possibly by the acidic pH of apple slices (pH 4.2 versus pH 5.8 for melon slices), may have contributed to their inability to reduce Salmonella contamination in the apple slices. Higher phage concentrations and/or the use of low-pH-tolerant phage mutants may be required to increase the efficacy of the phage treatment in reducing Salmonella contamination of fresh-cut produce with a low pH.
We describe the success of adjunctive bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection in the context of bilateral ureteric stents and bladder ulceration, after repeated failure of antibiotics alone. No bacteriophage-resistant bacteria arose, and the kinetics of bacteriophage and bacteria in urine suggest self-sustaining and self-limiting infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.